

ODISHA POWER TRANSMISSION CORPORATION LIMITED

VOL-II (PART-II)

PACKAGE: 11/2013-14 - "CONSTRUCTION OF 1 NO. 220 KV TRANSFORMER BAY WITH INSTALLATION OF ONE NO. 20MVA 220/33 KV TRANSFORMER ALONGWITH 3 NOS 33 KV FEEDER BAY AT 220/33 KV GRID SUB-STATION, LAXMIPUR ON TURNKEY BASIS".

GUARANTEED TECHNICAL PARTICULARS

NOTICE INVITING TENDER-NIT NO. 11 / 2013-14 TENDER SPECIFICATION NO Sr.GM-CPC-TENDER-LAXMIPUR PACKAGE-11 / 2013-14.

GUARANTEED TECHNICAL PARTICULARS

(TO BE FILLED AND SUBMITTED BY BIDDERS WITH THE TECHNICAL BID)

GUARANTEED TECHNICAL PARTICULARS IVT AND CVT

GUARANTEED TECHNICAL PARTICULARS.

Sl.	Description.	220KV	132KV	33KV	400 KV /	132KV CVT
No		IVT	IVT	IVT	220KV CVT	
		3P/0.2	3P/0.2	0.2	3P/3P/0.2	3P/3P/0.2
		Accurac	Accuracy	Accuracy	Accuracy	Accuracy
		y Class	Class	Class	Class.	Class.
1	Bidder's name and address.					
2	Name and address of the					
	Manufacturer.					
3	Manufacturer's type and					
	designation.					
4	Standards applicable.					
5	Type of IVT/CVT					
6	Rated primary voltage (kv).					
7	Rated secondary voltage					
	(volts).					
7.1	Winding-I.					
7.2	Winding-II.					
7.3	Winding-III.					
8	Rated frequency [HZ].					
9	Rated burden:-					
	Protection Winding					
	Protection Winding					
10	Metering Winding					
10	Number of secondary					
11	windings.					
11	Accuracy class.					
[I]	[protection] Winding					
[II]	[metering] Winding					
12	Rated voltage factor for					
	continuous operation at rated					
12	frequency.Rated voltage factor for 30					
13	seconds at rated frequency.					
14	One minute dry and wet					
14	power frequency withstand					
	voltage for primary side					
	[kv] rms.					
15	One minute power frequency					
	withstand voltage for					
	secondary winding [kv] rms.					
16	1.2/50 micro- second					
	impulse withstand test					
	voltage for primary side					
17	Temperature rise over an					
	ambient temperature of 50°C					

Sl. No	Description.	220KV IVT	132KV IVT	33KV IVT	400 KV / 220KV CVT	132KV CVT
		3P/0.2 Accurac y Class	3P/0.2 Accuracy Class	0.2 Accuracy Class	3P/3P/0.2 Accuracy Class.	3P/3P/0.2 Accuracy Class.
[a]	 With 1.2 times rated primary voltage at rated frequency and at rated burdens. [I] Winding [°C] [II] Oil [°C] [III] Other parts [°C] 					
[b]	With 1.5 times rated primary voltage for 30 seconds at rated frequency and at rated burdens. [I] Winding [°C] [II] Oil [°C] [III] Other parts [°C]					
18	Class of insulation.					
19	Total creepage distance in (mm)					
20	Maximum radio interference voltage at 1.1 times maximum line to ground					
21	voltage (micro volts)Corona inception and extinction voltage (kv) rms					
22	Partial discharge level (piccocoulombs)					
23	 Primary.[For 220KV, 132KV & 33KV IVT] (a) No. of primary turns (b) Material of primary (c) Size of the primary (d) Cross sectional area of primary conductor (e) Current density adopted for primary (f) Type of primary (g) Name of the insulating materials used for primary conductor. (h) Weight of primary (b) Name of the insulating (c) Size of the insulating (c) Size of the primary (c) Size of the primary					
24	Secondary. [For 220KV,					

SI. No	Description.	220KV IVT	132KV IVT	33KV IVT	400 KV / 220KV CVT	132KV CVT
		3P/0.2 Accurac y Class	3P/0.2 Accuracy Class	0.2 Accuracy Class	3P/3P/0.2 Accuracy Class.	3P/3P/0.2 Accuracy Class.
25.	 132KV & 33KV IVT] (a)No. of secondary turns (b) Material of secondary © Size of the secondary conductor bare /insulated. (d)Cross sectional area of secondary conductor (mm2) (e)Current density adopted for secondary winding(A/mm2) (f)Type of secondary winding (g)Name of the insulating materials used for secondary conductor. (h)Weight of secondary winding. Core. [For 220KV, 132KV & 33KV IVT] (a)Shape of the core (b)Material and grade of the core laminations (c)Thickness of the core lamination (mm) (d)Maximum flux density adopted (Tesla) (e)Net iron area of the core (f)Watt loss/kg. for the core 					
26	materials at the operating flux density(W/kg)(g) Total weight of the core(kg)(h)Whether B-H curve for core material enclosed?(i)Whether specific loss vrs. Flux density curve enclosed ?INSULATION[For 220KV, 132KV & 33KV IVT]					
	 (a) Insulation between core and secondaries. (b) Insulation between secondaries. © Insulation between secondary and primary. 					

Sl. No	Description.	220KV IVT	132KV IVT	33KV IVT	400 KV / 220KV CVT	132KV CVT
		3P/0.2 Accurac y Class	3P/0.2 Accuracy Class	0.2 Accuracy Class	3P/3P/0.2 Accuracy Class.	3P/3P/0.2 Accuracy Class.
27	 (d) Insulation between primary .and core. DIMENSIONS OF CORE AND WINDINGS[For 220KV, 132KV & 33KV IVT] (a)Diameter of the core (mm) (b)Inner diameter of the secondary windings(mm) (c) Outer diameter of the secondary windings (mm) (d) Inner diameter of the primary winding(mm) (e) Outer diameter of the primary winding(mm) (f) Minimum clearance from 					
	primary winding to tank(mm) (g) Minimum clearance from secondary winding to tank(mm)					
28.	 Percentage voltage ratio (error)/phase displacement (min.)at 100% rated burden at 0.8PF lagging for measuring winding. (a) 80% of rated voltage at frequency:- (b) 120% of rated voltage at frequency:- (c) Accuracy of standard PT to be used. during determination of errors (0.05 or better. 					
29.	 Percentage Voltage ratio /phase displacement (min.)at 25% rated burden at 0.8PF lagging for measuring winding. (a) 80% of rated voltage at rated frequency:- (b) 120% of rated voltage at rated frequency:- 					
30.	Percentage voltage (ratio)error /phase					

SI. No	Description.	220KV IVT	132KV IVT	33KV IVT	400 KV / 220KV CVT	132KV CVT
		3P/0.2 Accurac y Class	3P/0.2 Accuracy Class	0.2 Accuracy Class	3P/3P/0.2 Accuracy Class.	3P/3P/0.2 Accuracy Class.
	displacement (min.) at 100% rated burden at 0.8PF lagging for protection winding (a)5% of rated voltage. (b)1.2 times rated voltage (c)1.5 times rated voltage (d) 2% of rated voltage					
31.	Percentage voltage (ratio) error /phase displacement (min) at 25% of rated burden at 0.8PF lagging for protection winding (a)5% of rated voltage (b)1.2 times rated voltage. ©1.5 times rated voltage. (d) 2% of rated voltage.					
32.	Whether IVT/CVT is suitable for horizontal transportation.					
33.	Quantity of oil per IVT/ CVT (Ltrs/kg)					
34.	Standard to which oil conforms.					
35.	Characteristic of oil(Prior to filling)					
35.1.	Breakdown voltage (kv-rms)					
35.2.	Dielectric dissipation constant tan delta)					
35.3	Water content(PPM)					
35.4	Gas content(PPM)					
35.5	Interfacial tension at 27 degree C(N/m)					
35.6	Specific resistance.					
35.6. 1	At 90 deg.C(ohm-cm)					
35.6. 2	At 27 deg.C(ohm-cm)					
36.	Whether IVTS are hermetically sealed ? If so how ?					
37.	Total Weight (kg)					
38.	Transport weight (kg)					
39.	Dimensional details.					
40	Whether IVT characteristic					

SI. No	Description.	220KV IVT	132KV IVT	33KV IVT	400 KV / 220KV CVT	132KV CVT
	3P/0.23P/0.2AccuracAccuracyyClassClass		0.2 Accuracy Class	3P/3P/0.2 Accuracy Class.	3P/3P/0.2 Accuracy Class.	
	curves enclosed?					
41.	TANK AND SECONDARY TERMINAL BOX.					
41.1	Material of the IVT/ CVT tank					
41.2	Material of the secondary terminal box.					
41.3	Thickness of the IVT/ CVT tank material.					
41.4	Thickness of the secondary terminal box material.					
41.5	Zinc coating of IVT/ CVT tank(g/sq.m)					
41.6	Zinc coating of the secondary terminal box (g/sq.m)					
41.7	Weather proof rating of secondary terminal box.					
41.8	Weight of tank fitting and other accessories.					
	TERMINAL CONNECTORS					
01.	Manufacturer's name					
02.	Applicable standards.,					
03.	Туре.					
04.	Material of connector. (a)Clamp body. (b)Bolts and Nuts. (c) Spring Washers					
05.	Rated current.					
06.	(a) Rated terminal load(kg)(b) Factor of safety.					
07.	Minimum thickness of any part(mm)					
08.	Weight of connector complete with hardware.					
09.	Type test reports as per IS enclosed.					
10.	OGA drawing enclosed.					
	BUSHING/SUPPORT INSULATOR					
01	Manufacturer's name					
02.	Туре.					
03.	Applicable standards.					

Sl. No	Description.	220KV IVT	132KV IVT	33KV IVT	400 KV / 220KV CVT	132KV CVT
		3P/0.2 Accurac y Class	3P/0.2 Accuracy Class	0.2 Accuracy Class	3P/3P/0.2 Accuracy Class.	3P/3P/0.2 Accuracy Class.
04	Dimensions: (i)Height(mm) (ii)Diameter(top)(mm) (iii)Diameter(bottom)(mm)					
05	Total creepage distance (mm).					
06.	Rated voltage(KV)(rms)					
07.	Power frequency withstand voltage for (1 minute dry and wet(KV/rms)					
08.	1.2/50 micro-second Impulse withstand voltage (KVP)					
09.	Corona Extinction voltage(kv)					
10.	Weight(kg)					
11.	Maximum allowable span (mm)					
12.	Cantilever strength(kg)					
13.	OGA drawing enclosed.					

ADDITIONAL TECHNICAL REQUIREMENT FOR 400 KV,220KV & 132KV CVT

- 1. Rated capacitance of the CVT
- 2. High frequency capacitance for entire carrier frequency range.
- 3. Equivalent series resistance over the entire frequency.
- 4. Stray capacitance and stray conductance of the LV terminal over entire carrier frequency range.
- 5. Capacitance (PF) /Tan delta between:
 - a) HV-HF point
 - b) HF point-Ground point of International Transformer.
 - c) HV-Ground point of Intermediate

Transformer winding.

- 6. Capacitive reactance of the two parts of the divider i.e. High voltage capacitor, and Intermediate voltage capacitor, connected in parallel.
- 7. Total Inductive reactance, offered by CVT.
- 8. Voltage ratio of the capacitor divider.
- 9. Open circuit Intermediate voltage.
 - 10. Rated open circuit Intermediate voltage.
- 11. Reference range of temperatures within which the CVT complies with the relevant accuracy requirements.
- 12. Protective device, in-corporate in the CVT for limiting over voltages and/or to prevent sustained Ferro resonance.
- 13. Rated voltage of Surge Arrester, connected at the secondary of CVT.
- 14. Natural frequency of coupling (KHZ).
- 15. Self tuning frequency of CVT (KHZ).
- 16. Bandwidth (KHZ).
- 17. Temperature rise over ambient.
- 18. One minute power frequency test voltage of secondary winding (KV).
- 19. One minute power frequency test voltage of H.F. terminal (KV).
- 20. One minute power frequency test voltage of capacitor (dry & wet) (KV).
- 21. 1.2/50/micro second Impulse withstand test voltage of capacitor (KVP).
- 22. 250/2500 micro second switching surge withstand voltage of capacitor (dry & wet).
- 23. <u>Literature</u>

Whether the followings are enclosed?

- 23.1 Type Test reports as per IEC 186.
- 23.2 OGA drawing of CVT and terminal connector.
- 23.3 Characteristic curves.
- 23.4 Drawing showing clearance from earthed object.
- 23.5 Details of Surge Arrester, connected at secondary winding of CVT.
- 24. ELECTROMAGNENIC UNIT:-

24.1 <u>CORE</u>:-

- a) Core diameter (mm)
- b) Window Weight (mm)
- c) Leg centre (mm)
- d) Net cross sectional area of iron In the core (mm²)
- e) Core lamination thickness (mm)
- f) Type & grade of core.
- g) Design flux density at rated voltage. And rated frequency (Tesla)
- h) Design flux density at highest system voltage & lowest system frequency (Tesla).
- i) Minimum knee point voltage (volts).

24.2 PRIMARY WINDING:-

- a) No. of turns.
- b) Bare size of conductor
- c) Insulated size of conductor.
- d) Area of cross section.
- e) Current density (A/mm^2) .
- f) Conductor material.
- g) Class of insulation.
- h) Power frequency withstand level. (KV-rms).
- i) Impulse withstand level (KVP).

24.3 Secondary Winding Protection Protection Metering Winding Winding Winding. No.of turns a) b) Bare conductor size (mm) Insulated conductor size (mm) c) d) Cross-sectional area (sq.mm) Current density (A/ mm²) e) f) Conductor material. Class of Insulation ' **g**) h) Power frequency withstand Level (KV-rms).

Signature of the Tenderer with seal and date.

ANNEXURE –B.

CALIBRATION STATUS OF TESTING EQUIPMENTS AND INSTRUMENTS/METERS.

Name	Meters	Date of	Due date	Name of	Whether	Whether	Whether	Whether	Whether	Inspite of	Rema
of the	and	Calibra-	of Cali-	the Cali-	Calibrat-	documen	the	the calibra	green sticker	imposed	rks
test.	equipmen	tion.	bration.	brating	ing	ts	meters/	ting	or blue	limitations,,	
	ts			Agency.	Agency	relating	equipme	agency has	sticker or	whether the	
	required				is Govt.	to Govt.	nt fulfill	put any	yellow sticker	particular	
	for the				Approv-	Approval	the	limitation	has been	meter/equip	
	correspon				ed.	of the	accuracy	towards	affixed on the	ment can still	
	di-ng test					cali-	class as	the use	body of the	be used ?	
	with					brating	per	of the	particular	Justify its use	
	range,					Agency	calibrati	particular	equipment/m	for	
	accuracy,					furnished	on report	meter/equi	eter. State the	correspondin	
	make and					?	-	pment. If	colour of the	g test(s).	
	Sl. No.							yes, state	affixed		
								the	sticker.		
								limitations.			
1	2	3	4	5	6	7	8	9	10	11	12

Signature of the tenderer with seal and date.

ANNEXURE-C

CHECK LIST TOWARDS TYPE TEST REPORTS.

Nam e of the Type Test.	Date of Test.	Name of the Labor atory where the Test has been condu cted.	Wheth er the Labora tory is Govern ment Approv ed.	Whethe r the Test reports are valid as per Clause No.8.1 of T.S.	Whether the copy of Test Report in complete shape alongwith drawings etc. furnished or not ?	Whether the Tested I.V.T. fulfills the technical require- ments as per TS.	If the type tested I.V.T does not fulfill the technical requirements as per this specification, whether the bidder agrees to conduct the particular test(s) again at their own cost without any financial liability to OPTCL in the presence of OPTCL's	Re m ar k
1	2	3	4	5	6	7	within the specified delivery period. 8	9

Signature of the Tenderer with seal and date.

GUARANTEED TECHNICAL PARTICULARS

BATTERY AND BATTERY CHARGER

ANNEXURE – I

SCHEDULE OF GUARANTEED TECHNICAL PARTICULARS FOR 220V LEAD ACID PLANTE STORAGE BATTERY.

[To be filled in by the bidder]

350AH/550AH Values/Others

		Values/Others
1.	Manufacturer's Name and address	
	alongwith Fax No. & Tele phone No.	
2.	Conforming to standards	
3.	Type and designation as per ISS	
4.	Manufacturer's type and designation	
5.	AH capacity and voltage of the battery at	
	27 deg.C.	
[a]	At 10 hour rate of discharge.	

[b]	At 5 hours rate of discharge.	
[C]	At 1 hour rate of discharge	
[d]	At 1 minute rate of discharge.	
[e]	At $\frac{1}{2}$ hour rate of discharge.	
6.	Open circuit voltage of each battery cell.	
[a]	Fully charged	
[b]	Floating condition.	
[C]	When completely discharged at.	
[i].	10hr. rate.	
[ii].	5 hour rate	
[iii]	1 hour rate	
[iv]	1/2 hr. rate	
[v].	1 minute rate	
[vi]	1-second rate.	
7.	Recommended float charging voltage	
	[volts] across the battery terminals.	
8.	Recommended boost charging voltage	
	[volts].	
9.	Time required for boost charging from	
	discharged conditions [in hours]	
10.	Trickle charging	
	Current range/cell	
11.	AH capacity at 10 hour rate at 10 hour	
	rate at room temperatures of :	
[a]	15 deg C.	
[b]	27 deg C.	
[C]	50 deg C.	
12.	CELL DETAILS	
[i].	No. of cells per battery	
[ii].	Total nos. of plates per cell.	
[iii]	No. of positive plates per cell.	

(iv)	Type of positive plate	
(v)	No. of negative plates per cell	
(vi)	Type of negative plate	
(vii)	Surface area of plates in sq. mm.	
(viii	CONSTRUCTIONAL DETAILS AND DIME	ENSIONS OF
)		
(a)	Positive plate	
(b)	Negative plate	
(c)	Material of the container	
(d)	Thickness of the container	
(e)	Overall dimensions of each cell	
	(LxBxH)	
ix.	Weight per Cell (Kg)	

(a)	Active elements-positive	
(b)	Active elements-Negative	
(c)	Container	
(d)	Net dry weight	
(e)	Weight with electrolyte	
x.	Distance between centre of cells	
Δ.	where erected.	
xi.	Nominal cell voltage.	
xii.	Internal resistance of each cell at	
(a)	Fully charged condition	
(b)	Fully discharged condition	
(c)	Floating condition	
13.	Type, Thickness and materials of the	
	separators	
14.	Containers	
(a)	Туре	
(b)	Material	
(c)	Outside dimensions (LxBxH)	
15.	Cover and its type and material	
16.	Clearance in mm between	
(a)	Top of plates and top of container	
(b)	Bottom of plates and bottom of	
	container	
(c)	Edges of plates and inner surface of	
	container.	
17.	Sediment space (depth) in mm	
18.	ELECTROLYTE	
(a)	Amount of electrolyte and specific	
	gravity at 27 deg. C for first filling.	
(b)	First filling per set with 10% of extra	
	furnished.	
(c)	Electrolyte conforms to standard	
(d)	Rated specific gravity of electrolyte	
	when fully charged at room's	
	temperature of	
(i)	15 deg. C	
(ii)	27 deg. C	
(iii)	50 deg C.	
(e)	Specific gravity of electrolyte at the	
	end of discharge at 10 hour discharge	
	rate.	
(f)	Maximum electrolyte temp. that the	

	cells can withstand without injurious	
	effect.	
(i)	Continuously	
(ii)	For short period	
19.	INTER CELL CONNECTOR	
(a)	Whether Inter-cell connector to be	
(a)	furnished ? (Yes / No)	
(b)	Type of inter-cell connector (bolted or	
	others)	
(c)	Materials of inter cell connector	
20.	Inter row, inter-tier connectors and	
(a)	end take-off furnished ? (Yes / No)	
(b)	Description, size, current rating, type	
	and material.	
21.	RACKS	
(a)	No. of racks per battery	
(b)	No. of cells per rack	
(c)	Type of racks (rows and tiers)	
(d)	Material of the rack	
(e)	Racks provided with	
(i)	Numbering tags for cell	
(ii)	Teak wood clamps for cables	
(f)	Whether anti-acid coating provided ?	
(g)	Description of rack insulators	
(h)	Outline dimensions of racks	
(i)	Net weight of racks	
(j)	Shipping weight	
22.	Recommended rate for charging the	Start Finish
	battery in 8 hours.	
(a)	Current	
(b)	Voltage	
23.	Recommended float charge rate	
24.	Resistance of the battery including	
	inter-connector between the cells in	
	ohms.	
25.	Maximum short circuit current per	
(a)	battery	
(b)	Allowable duration of short circuit	
26.	Short circuit current for a dead short	
	across the battery terminals when	
(a)	Float at 2.1 volts per cell.	
(b)	Boost charge to 2.75 volts per cell.	

27.	Time to full abarge at finishing rate	
$\begin{vmatrix} 27 \\ a \end{vmatrix}$	Time to full charge at finishing rate only	
(b)	Time to full charge at higher starting	
	rate	
(c)	Time for full charge to charge by two	
	step charging at starting up and	
	finishing rates	
28.	Guaranteed AH efficiency at 10 hour	
	rate of discharge in percent.	
29.	Guaranteed WH efficiency at 10 hour	
	rate of discharge in percent.	
30.	Instructions for filling and initial	
	charging of the battery with finishing	
	and two step charging rates.	
31.	Recommended interval at which	
	battery should be discharged at 10	
	hour rate and quick charged.	
32.	Recommended floating voltage per	
	cell and the minimum variation.	
33.	Recommended maximum period of	
	storage before the first charge.	
34.	Average life in years	
35.	Guaranteed life of battery in years.	
36.	Estimated life of battery in years.	
37.	Total shipping weight of battery units	
38.	Dimensioned lay-out drawings of the	
	rack and battery to be attached with	
	the tender. (Whether furnished ? Yes /	
	No)	
39.	The following characteristic curves,	
	to be furnished alongwith the tender	
	(whether furnished)	
(a)	Battery discharge curves at various	
	rates between one minute and 10 hour	
	rate. (Yes / No.)	
(b)	Curves showing the relation between	
	the specific gravity and amount of	
	charge in the battery for both charging	
	and discharging conditions. (Yes /	
	No)	
(c)	Curves showing the relation between	
	cell voltage and charging current	

	when charged at	
(i)	Finishing rate (Yes/ No)	
(ii)	High starting rate (Yes/ No)	
(iii)	Two step charging by starting and	
	finishing rate (Yes / No)	
(d)	Curve of internal resistance at the end	
	of various discharge rates (Whether	
	furnished (Yes / No)	

ANNEXURE – II

GUARANTEED TECHNICAL PARTICULARS FOR BATTERY CHARGER (220 V D.C. SYSTEM) SUITABLE FOR SPECIFIED LEAD ACID PLANTE STORAGE BATTERY

(To be filled in by the Bidder)

Values/ Others

- 1. Manufacturer's Name
- 2. Rated output of the charger
- 2.1 Voltage (volts)
- 2.2 Current (amps)
- 2.3 Power factor
- 3. Short time rating
- 4. Type of cooling

- 5. Hottest stack temperature (⁰C)
- 6. Charger dimensions
- 6.1 Height (mm)
- 6.2 Depth (mm)
- 6.3 Width (mm)
- 6.4 Sheet thickness (mm)
- 7. Charger weight
- 8. Charger rated output current
- 8.1 Float charging mode
- 8.2 Boost charging mode
- 9. Load limiter current setting range (Trickle mode)

10.	RECTIFIER TRANSFORMER	Float	Boost
		Charger	Charger

- 10.1 Make
- 10.2 Type
- 10.3 Rated KVA
- 10.4 Over current impedance (ohms)
- 10.5 Input line winding connection in vector representation
- 10.6 Rated primary voltage (volts)
- 10.7 Rated secondary voltage (volts)
- 10.8 Rated frequency (Hertz.)
- 10.9 Rated output (amps)
- 10.10 Turn ratio
- 10.11 Insulation level
- 10.12 Impulse withstand test voltage (KVP)
- 10.13 One minute power frequency over voltage.
 - (a) Primary winding (KV-rms).
 - (b) Secondary winding (KV-rms)

- 10.14 Material of primary winding conductor
- 10.15 Material of secondary winding conductor
- 10.16 Size, Cross-sectional area and current density of primary winding conductor.
- 10.17 Size, cross-sectional area and current density of secondary winding conductor
- 10.18 No. of turns of primary / phase
- 10.19 No. of turns of secondary / phase
- 10.20 Name of the insulating materials used and class
- 10.21 Core
- 10.21.I Name of the core material
- 10.21.II Grade of the core
- 10.21.III Thickness of core material (mm)
- 10.22 Maximum temperature rise over an ambient temperature of 50°C
 - (a) Primary Winding (^{0}C)
 - (b) Secondary Winding (⁰C)
 - (c) Core (^{0}C)
- 10.23 standards applicable
- 11.0 RECTIFIER ASSEMBLY :
- 11.1 Make
- 11.2 Type of semi conductor material
- 11.3 Rated direct current per cell (A)
- 11.4 Rated direct voltage (V)
- 11.5 Rated input voltage (V)
- 11.6 Type of connections of rectifier elements.
- 11.7 Forward power loss and reverse power loss (watts).
- 11.8 Forward voltage drop and reverse voltage drop (volts)
- 11.9 Conversion efficiency (%)
- 11.10 Rated DC output voltage (V)
- 11.11 Rated AC input voltage (V)
- 11.12 Rated output current (A)
- 11.13 Ripple factor

- 11.14 Voltage factor
- 11.15 Current factor
- 11.16 Maximum temperature rise over an ambient temperature of 50°C (°C)
- 11.17 Maximum permissible ambient temperature for guaranteed rating (°C)
- 11.18 Maximum and minimum permissible humidity rating (%)
- 11.19 Life expectancy (years)
- 11.20 Standard(s) applicable
- 11.21 Characteristic curve of DC output plotted against output current (Whether submitted ?) Yes / No.
- 12.0 AUTOMATIC VOLTAGE REGULATOR
- 12.1 manufacturer's name
- 12.2 Manufacturer's type
- 12.3 Percentage stabilisation of the rectifier with the help of AVR when
 - (a) Input voltage changes with \pm of its nominal value.
 - (b) DC output of the rectifier varies from no-load to full load.
- 12.4 Rated output voltage
- 12.5 Allowable AC frequency fluctuations
- 12.6 Voltage setting range
- 12.7 Response time of automatic voltage regulator
- 13.0 Manual voltage regular (float mode)
 - 13.1 Type
 - 13.2 Voltage setting range
- 14.0 Boost charging current setting range
- 15.0 Boost charging limit setting range
- 16.0 DIODES
- 16.1 Manufacturer's name
- 16.2 Type of circuit
- 16.3 Method of construction
- 16.4 Continuous current rating (Amps.)

- 16.5 Short time current rating (Amps)
- 16.6 Type of cooling
- 16.7 Forward power loss and reverse power less (W)
- 16.8 Life expectancy
- 16.9 Forward voltage drop on rated current
- 16.10 Resistance offered for reverse current flow
- 16.11 Maximum temperature rise over an ambient temperature of 50° C.
- 17.0 CONTACTORS / MOULDED CASE CIRCUIT BREAKERS
- 17.1 Type
- 17.2 Make
- 17.3 Rated voltage (V)
- 17.4 Rated continuous currents (A)
- 17.5 Contact material
- 17.6 Operating coil
- 17.6.1 Voltage (V)
- 17.6.2 Voltage range and power for closing and holding
- 17.6.3 Voltage range and power for drop off.
- 17.7 Thermal trip rating
- 17.8 Thermal trip time
- 17.9 Details of CT if any
- 17.10 Auxiliary contacts
- 17.10.1 Number
- 17.10.2 Current rating
- 17.11 Characteristics of back-up HRC fuse

18.0 RELAYS :

- 18.1 Make and type of protective and alarm relays
- (a) Thermal overload relay
- (b) Input under voltage relay
- (c) Single phasing alarm relay

- (d) Phase reversal relay
- (e) D.C. output over-voltage relay
- (f) D.C. output under voltage relay
- (g) Charger failure relay
- (h) Battery earth fault relay
- (i) A.C. input failure relay (for connecting the D.C. load)
- (j) Fuse failure relay
- (k) Alarm accept relay
- 18.2 Rated voltage of each of the above
 - (a) AC/DC
 - (b) Permissible variation
 - (c) Frequency
- 18.3 VA burden of each of the above
- 18.4 Operating time of each of the above
- 18.5 Time vs current curves of each of the above.(to be enclosed alongwith the offer)
- 18.6 Reset time
- 18.7 Accuracy
- 18.8 Setting range
- 18.9 Reset factor
- 18.10 Number of contacts
 - (a) Normally open
 - (b) Normally closed
- 18.11 Rating of contacts
 - (a) Rated Voltage (V)
 - (b) Rated making and breaking
 - (c) Continuous rating
- 18.12 No. of operations
- 18.13 Operation indicator

19.0 INDICATING LAMPS

- 19.1 Manufacturer's name
- 19.2 Type and designation
- 19.3 Permissible voltage variation
- 19.4 Rated power consumption (watts).
- 19.5 Series resistance, if any
- **20.0 SWITCHES:**
- 20.1 Manufacturer's name
- 20.2 Ratings
 - (a) Continuous current
 - (b) Short circuit making capacity
 - (c) Breaking capacity
 - (d) Voltage
- 20.3 Operating mechanism details
- 20.4 Type of visual indication
 - (a) OFF and ON position
 - (b) Fuse blow out

21.0 FUSES

- (a) Make
- (b) Type
- (c) Rating (Amps)
- (d) Interrupting rating (KA)

22.0 INSTRUMENTS

- 22.1 Manufacturer's Name
 - (a) Ammeter
 - (b) Voltmeter

22.2 Type

- (a) Ammeter
- (b) Voltmeter

22.3 Standard

- (a) Ammeter
- (b) Voltmeter
- 22.4 Scale range

22.4.1 Ammeter

- (a) Float charger
- (b) Boost charger
- (c) Battery float
- (d) Battery boost

22.4.2 Volt meter

- (a) Input supply
- (b) Charger output
- (c) Load

22.5 Size of dial

- (a) Volt meter
- (b) Ammeter

22.6 Accuracy class

- (a) Volt meter
- (b) Ammeter
- 22.7 Temperature at which calibrated
- 22.8 Limit of errors
- 22.9 Out line dimensions
- 22.10 Type of mounting
- 22.11 Selector switch for volt meter (AC & DC)
 - (a) Make

(b) Rating

23.0 CAPACITOR

- 23.1 Manufacturer's name
- 23.2 Type
- 23.3 Capacitance (Farad)
- 23.4 Maximum temperature rise over an ambient temperature of 50° C.
- 24. Reference float voltage at ambient temperature of 27° C

25. Whether protection is given for float voltage to Avoid low battery voltage due to sensor or circuit Malfunction. (Yes/ No).

ANNEXURE – IV-A (For Testing of Battery) (To be filled in by the bidder)

CALIBRATION STATUS OF TESTING EQUIPMENTS AND INSTRUMENTS/ METERS

Name	Meters &	Date of	Due date of	Name of	Whether	Whether	Whether the	Whether the	Whether the	Inspite of	Remarks
of the	Equipments	Calibr-	Calibration	the	Calibrating	documents	meters/	calibrating	calibrating	imposed	
Test	required for the	ation		Calibratig	Agency is	relating to Govt.	equipments	agency has	agency has put	limitations.	
	corresponding			Agency	Govt.	approval of the	fulfil the	put any	any limitation	Whether the	
	test with range,				approved	calibrating	accuracy	limitation	towards the use	particular	
	accuracy, make					Agency	class as per	towards the	of the	meter /	
	& Sl. No.					furnished	calibration	use of the	particular	equipment can	
							report.	particular	meter/equip-	still be used ?	
								meter/	ment/ meter.	Justify its use	
								equipment. If	State the colour	for	
								yes, state the	of the affixed	corresponding	
								limitations	sticker	test(s)	
1	2	3	4	5	6	7	8	9	10	11	12

Signature of the tenderer with seal & date

ANNEXURE – IV-B

(For Testing of Battery Charger)

CALIBRATION STATUS OF TESTING EQUIPMENTS AND INSTRUMENTS/ METERS

29/111

Name of the Test	Meters & Equipments required for the corresponding test with range, accuracy, make & Sl. No.	Date of Calibr- ation	Due date of Calibration	Name of the Calibratig Agency	Whether Calibrating Agency is Govt. approved	Whether documents relating to Govt. approval of the calibrating Agency furnished	Whether the meters/ equipments fulfil the accuracy class as per calibration report.	Whether the calibrating agency has put any limitation towards the use of the particular meter/ equipment. If yes state the limitations	Whether the calibrating agency has put any limitation towards the use of the particular meter/equip- ment/ meter. State the colour of the affixed sticker	Inspite of imposed limitations. Whether the particular meter / equipment can still be used ? Justify its use for corresponding test(s)	Remarks
1	2	3	4	5	6	7	8	9	10	11	12

Signature of the tenderer with seal & date

ANNEXURE V – A <u>CHECK LIST TOWARDS TYPE TEST REPORTS FOR BATTERY</u>

Name of	Date	of	Name of the	Whether th	e Whether the	Whether the	Whether the	If the type tested battery does not	Remar
the Type	Test		Laboratory where	Laboratory i	s Test report is	Test report in	type tested	fulfill the technical requirements as	ks
Test			the Test has been	Government	valid as per	complete	Plante lead	per this specification, whether the	
			conducted	approved	Spn.	shape	acid battery	bidder agrees to conduct he particular	
						alongwith	fulfills the	type test again at their own cost	
						drawings etc.	technical	without any financial liability to	
						furnished or	requirements	OPTCL in the presence of OPTCL's	
						not ?	as per TS	representative within the specified	

							delivery period	
1	2	3	4	5	6	7	8	9

Signature of the tenderer with seal & date

ANNEXURE V – B <u>CHECK LIST TOWARDS TYPE TEST REPORTS FOR BATTERY CHARGER</u>

Name of the Type Test	Date of Test	Laboratory where the Test	Laboratory is	Whether the Test report is valid as per Spn.		type tested battery charger fulfills the technical requirements	fulfill the technical requirements as per this specification, whether the bidder agrees to conduct he particular type test again at their	Remarks
1	2	3	4	5	6	7	8	9

Signature of the tenderer with seal & date.

GUARANTEED TECHNICAL PARTICULARS

FOR

SF6 AND VACUUM CIRCUIT BREAKERS

GUARANTEED TECHNICAL PARTICULARS FOR CIRCUIT BREAKERS

For 420 KV,245 KV & 145 KV SF6 CB

- 1. (a) Maker's name and country of manufacture
 - (b) Manufacturer's type Designation

- 1. Applicable technical standards
- 2. (a) Rated voltage(kV)

(b) Rated frequency(Hz)

- 4. Number of Poles
- 5. Class
- 6. Rated normal current
- (a) Under site conditions(Amps)
- (b) Rated (Amps)
- 7. (a) Rated short circuit breaking current
 - (i) Rms value of AC component of rated
 - short circuit current (KA)
 - (ii) Percentage DC component
 - (iii) Assymetrical Breaking Current at Highest System Voltage
 - (iv) Certificate or report no
 - (iii) Oscillogram no.
 - (b) Rated short circuit making current (KA peak)
 - (i) At Higher rated Voltage
 - (ii) At Lower rated Voltage
 - (c) (i) Maximum Breaking capacity Under Phase Opposition(KAP)
 - (iii) Max Pole discrepancy(ms)
 - (iv) Max arc duration & Corresponding current under lockout pressure
- 8. First pole to clear factor
- Rated transient recovery voltage for terminal faults (kV peak)
- 10. Rated characteristics for short line faults.
- 11. Rated operating sequence

- 12. Rated duration of short circuit(Sec.)
- 13. Rated out of phase making & breaking current (kA)
- 14. (a) Opening time (ms)
 - (i) Maximum Opening time under any condition
 - (ii) With limiting Voltage & Pressure.
 - (b) Arcing time (ms)
 - (i) At 100% rated breaking current (ms)
 - (ii) At 50% rated breaking current (ms)
 - (iii) At 25% rated breaking current (ms)
 - (iv) At 10% rated breaking current (ms)
 - (v) Maximum arcing time at lowest fault current (ms).
 - (c) Break Time (ms)
 - (i) At 100% rated breaking current (ms)
 - (ii) At 50% rated breaking current (ms)
 - (iii) At 25% rated breaking current (ms)
 - (iv) At 10% rated breaking current (ms)
 - (v) Maximum break time at lowest fault current (ms).
 - Maximum Total Break Time under any duty condition For any current up to rated breaking current with limiting condition of Voltage & Pressure(ms)
 - (d) Closing time (ms)
 - (e) Minimum dead time for 3 phase reclosing
 - (f) Maximum Close Open Time under any condition

With limiting Voltage & Pressure.

- (g) Minimum Time Interval between each make/ Break Operation.
- 15. Rated line charging breaking current (kA)

- 16. Rated small inductive breaking current (kA)
- 17. (i)Max. rise of temperature over ambient for current rating under sl. 6.
 (ii)Max. rise of temperature for Main contacts over design ambient temperature of 50deg C.
- 18. Interrupting capacity based on duty cycle as per sl. 11.
 - (a) AC ;component (kA)
 - (b) Percentage DC component.
- 19. Latching current (kA)
- 20. No. of breaks in series per pole.
- 21. Length of contact travel (mm)
- 22. Total length of break per pole (mm)
- 23. Rate of contact travel:
 - (a) At tripping (metres/sec.)
 - (b) At closing (metres/sec.)
- 24. Type of devices, if any, used to obtain uniform voltage distribution between breaks.
- 25. Recovery voltage distribution between breaks in percent of rated voltage.
 - (a) Single line to ground fault
 - (b) Interruption on short lines.

- (c) Switching off an unloaded, transformer
- 26. (i) Type of main contact.
 - (ii) Number of auxiliary contacts per pole for normal operation(NO & NC)
 - (iii) Number of auxiliary contacts per pole provided for Owner's use(NO & NC)
 - (iv)Current rating of Auxiliary contacts
- 27. Type of arcing-contacts and/or arc

control device

28. Material of contacts:

ii.

- i. Main
 - Arcing
 - iii. Whether contacts are silver plated
 - iv. Thickness of silver coating mm
 - v. Contact pressure, kg/sq. mm.
- 29. Insulation level of the breaker:
 - (a) 1 minute power frequency withstand voltage kV rms(Dry & Wet)
 (i) Between live terminals & Ground
 (ii) Between terminals with Breaker contacts open
 (b) Switching surge withstand test Voltage kV (peak)
 To earth
 Across open contacts
 - (c) Lightning impulse withstand test voltage, kV(peak)
 - To earth
 - Across open contacts
- (d) Max. dynamic power frequency over voltage withstand kV (peak)

- 30. i) RIV level (Max)
 - ii) Corona inception voltage (kV rms)
 - iii) Corona extinction voltage (kV rms)

31. Minimum clearances

- (a) Between phases (live parts)(mm)
- (b) Between live parts and earth (mm)
- (c) Total Creepage Distance (i) To ground

(ii) Between Terminals

- 32. Whether the circuit breaker is fixed trip or trip free
- 33. Method of closing

(a)		Normal
(b)		Emergency
C 1 ·	1 .	

- 34. Type of closing mechanism
- 35. (a) Normal voltage of closing
 - (b) Pick up range (volts DC)
 - 36. (a) Power at normal voltage of closing mechanism (watts)
 - (b) Power at 85% of normal voltage of closing mechanism(watts)
 - (c) No of closing coils in operation
- 37. Type of tripping mechanismNumber of Tripping Coil
- 38. (A) Normal voltage of tripping coils(volts)
 - (a) Power at normal voltage for Tripping coils (watts)
 - (b) Power at 70% normal voltage for Tripping coils (watts).

- (c) No. of tripping coils in operation
- (d) Pick up range (V DC)

(B) Number of close open operation

(i) possible after failure of AC supply to motor

(ii) Time required for motor to charge the closing spring(Sec)

(iii) Wheather indication of spring charged condition will be provided in control cabinet.

- 39. Arc duration at 100% (ms)
- 40. Interruption capacity:
 - a) Opening

Arcing time no. of loops and time including resistor current duration (cycle)

Resistor current duration (cycle)

Total length of the arc (mm)

Max. length of the arc (mm)

Total interrupting time measured from instant of trip coil energisation to arc extinction of resistor current (cycles)

b) Closing time measured from instant of application of power to closing device upto arcing contacts touchings (cycles)

41. Critical current (current giving the longest arc when a break takes place) (kA)

a) Recovery voltage when circuit breaker tested at 100% rated breaking capacity (kV inst.)

- b) Rate of rise of restriking voltage at breaking
 - i) for 30% breaking capacity (kV/microsecs.)
 - ii) for 100% breaking capacity (kV/microsecs.)

c) Maximum over-voltage factor of the circuit breaker when switching off.

- i) Unloaded transformers
- ii) Loaded transformer

iii)Open circuited lines

- 42. When switching of synchronous systems:
 - (a) Max. current (kA)
 - (b) Max. contacts of 1 pole (kV)

43. No. of openings the circuit breaker is capable of performing without inspection, replacement of contacts or other main parts.

- (a) at 50% rated current
- (b) at 100% rated current (c) at current corresponding to 50% rated breaking capacity.

(d) at current corresponding to 100% rated breaking capacity.

- 44. (A)a)W eight of complete circuit breaker (Kg).
 - b) Impact loading for foundation design, to include deed load plus impact value on opening at maximum interrupting ratings, in terms of equivalent static load (Kg.)
 - c) Overall dimensions:

Height (mm)

Width (mm)

Length (mm)

(B)- Type & Material of Gasket used to ensure gas tight joints for

(i)Metal to Metal Joint

(ii) Metal to Porcelain Joints

(C) Type & Make of

a) Density Monitor

b)Pressure Gauge

(D) Density Monitor Setting

- a) Lock Out
- b) Alarm
- 45. Porcelain:
 - a) Make
 - b) Type
 - c) Descriptive pamphlet no.
 - d) Weight (kg.)
 - e) Transport dimensions (mm)
 - f) Height above floor, required to remove porcelain (mm).
 - g) Insulation class
 - h) One minute power frequency withstand, kV (rms) (dry & wet)
 - i) Flash over voltage (kV)

j) Lightning impulse withstand voltage kV (peak) (dry & wet)

- k) Switching surge withstand voltage kV (peak) (wet)
- 1) Corona discharge voltage (kV rms)
- m) Creepage distance, total protected (mm)
- n) Permissible safe cantilever loading on installed
- porcelain (Kg.m)
- 46. (i)Rated pressure of SF6 gas in the circuit breaker (Kg/sq.cm)

(ii) Rated Pressure of SF6 in operating Chamber(kg/cm2) at 20deg C

(iii) Limits of Pressure of extinguishing medium

47. Rated pressure of SF6 gas in the gas cylinders (Kg/sq.cm)

48. (i)Quantity of SF6 gas required per single pole unit (Kg.) at rated Pressure & at 20 deg C

- (ii) Guaranteed Maximum Leakage rate per Year.
- 49. Quantity of SF6 gas per cylinder (Kg.)

Standard to which SF6 Gas Complies.

50. (i) Weight of empty cylinder (Kg.)

(ii) Wheather Breakers are dispatched filled with SF6 Gas or filled at site.

51. Quantity of absorbent required per pole (Kg.)

52. Recommended interval for renewal of absorbent in case of outdoor circuit breakers operating in tropical conditions.

- 53. Chemical composition of absorbent
- 54. Quantity of absorbent covered in the scope of supply (including spare quantities)
- 55. Limits of gas pressure for pressure operation of circuit breaker (Kg/sq.cm)

56. Pressure and temperature at which the temperature compensated gas pressure switch will

- a. give alarm (Kg/sq.cm., deg. C)
- b. cut off (Kg/sq.cm. deg. C)
- 57. Name of SF6 supplier and country of origin.
- 58. Quantity of SF6 gas supplied for
 - Actual use in breakers (Kg.)
- b. As spare (Kg.)
- 59. Chemical composition of gas:
- a. Qty. of air by weight (ppm)
- b. Qty. of H_20 by weight (ppm)
- c. Qty. of CF_4 by weight (ppm)
- d. Qty. of free acid by weight (ppm)
- e. Density

a.

- f. Oil Content
- g. Resistivity
- 60. Motor For Circuit Breaker
 - a) Manufacture's name & address
 - b) Eqipment driven by motor or not.
 - c) Motor Type
 - d) Country of Origin
 - e) Type of Duty

- f) Type of Enclosure & Method of Cooling
- g) Applicable Standard to which motor confirms
- h) Type of mounting
- i) Direction of rotations as viewed from non driving end.
- j) Standard Continuous rating at 50deg C
 - k) Rated Voltage
 - 1) Rated Speed at rated Voltage & Frequency(rpm).
 - m) Full Load current at rated voltage & frequency.
 - n) Power Factor at rated load.
 - o) Rating of the Motor.
 - p) Time for fully charging the closing spring

61. Control Cabinet

- (a) Material of enclosure
- (b) Thickness of sheet steel
- (c) Painting for control cubicle
- (d) Paint shade
- (e) Degree of protection
- (f) Dimension
- (g) Material of gasket

SCHEDULE OF GUARANTEED TECHNICAL PARTICULARS FOR 36 KV CIRCUIT BREAKERS

1. Name of Manufacturer. 2. Manufacturer's type designation. ΚV 3. Rated Voltage. -4. Maximum (continuous) service rated Voltage ΚV 5. Normal current rating. Under normal conditions. a) Under site conditions. b) 6. Short time current rating for seconds (rms) 7. Maximum temperature rise over ambient. -°C 8. Breaking capacity. Symmetrical. KVA a) b) Assymmetrical. MVA KA 9. Making capacity. 10. Total break time in ms. a) at 10% rated interrupting capacity MS b) at rated interrupting capacity MS M.S. 11.Arcing time. 12. Make time. M.S. 13. Minimum reclosing time at full rated M.S. Interrupting MVA from the instant of Trip coil energisation. 14. Minimum dead time for 3 phase reclosing.-M.S.

- 15. Whether restricting free. Yes/No
- 16. One minute dry power frequency

Withstanding test voltage (KV rms)

Between line terminal and ground objects. - KV rms.

Between terminal with breaker contacts open. -KV rms.

17. 1.2/50micros full wave impulse withstand test voltage for the two cases above.

i) Between line terminal & grounded objects. -KV(Peak)

ii) Between terminal with breaker Contacts open. -

18. Busing or Insulators :

- i) Type of bushing.
- ii) Dry 1 minute power frequency KV rms withstand test voltage.
- iii) Dry flashover value. KV rms.
- iv) Wet flashover value. KV rms.
- V) 1.2/50 impulse withstand KV(Peak)
- vi) Creepage distance. mm
- vii) Puncture value of bushing. KV
- viii) Weight of bushing. Kg.
- 19. Minimum clearance in air.
- i) Between phases. mm
- ii) Live parts to earth. mm
- iii) Live parts to ground level mm
- iv) Between live parts & grounded object. mm
- 20. Number of poles of circuit breaker.
- 21. Number of breaks per phase.
- 22. Total length of break per phase.
- 23. Type of main contacts.
- 24. Type of Aux. Contacts.
- 25. Materials of auxiliary contacts.

26.	Contacts silver plated or not.	
-----	--------------------------------	--

- 27. Thickness of silver plating.
- 28. Contact pressure.
- 29. Voltage distribution between breaker.
- 30. Type of device if any, used to limit

the rate of rise or restricting voltage.

- 31. Voltage grading device if any used.
- 32. Number of auxiliary contacts provided.
- i) Those closed when breaker is closed.
- ii) These open when breaker is closed.iii) Those adjustable with respect to
 - the position of main contacts.
- 33. Type of operating mechanism.
 - i) Operning
 - ii) Closing.
- 34. Control circuit voltage.
- 35. Power required for trip coil Watts at 220V D.C.
 20. Demonstrated for close soil
- 36.Power required for close coil
- At 220V D.C. Watts 37. Frequency at which contacts are
- _
- To be replaced. 38. Nos. of terminal connector.
- 39. Steel support structure galvanized Whether
 With foundation Nuts & Bolts to be provided yes or no
 40. Type test certificate Furnished Yes/No
 41. Circuit Breaker weight. Kg.
- 42. Quantity. Nos.

FOR

CURRENT TRANSFORMER

47/111

GUARANTEED TECHNICAL PARTICULARS FOR CURRENT TRANSFORMER TO BE FILLED BY THE BIDDER.

SI. No.	Description	33	KV		13	2KV		220 KV 1200-600- 300A/ IA 1-1-1-1A	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A		2000-1000- 500A/ 1-1-1-1-1 A
1.	Bidder's name and address								
2.	Name and address of the Manufacturer								
3.	Manufacture's type designation								
4.	Standards applicable								
5.	Rated frequency (HZ)								
6.	Rated Voltage (KV)								
7.0	Rated current (A)								
7.1	Rated continuous current (A)								
7.2	Rated extended primary current (A)								
8.	Short time thermal current withstand for stipulated time duration (KA)								
9.	Dynamic current withstand (KAP)								
10.	1.2/50 μs impulse withstand voltage (KVP)								
11.	One minute dry and wet power frequency withstand voltage (KV-rms)								
12.	No. of cores per CT								
13.	Transformation Ratio								

SI. No.	Description	33	KV		132		220 KV	400 KV	
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1-1 A
14.	No. of secondary turns								
15.	Rated output at all ratios for metering core (VA)								
16.	Accuracy class								
17.	Minimum Knee point voltage at different taps for all 'PS' class cores (V)								
18.	Secondary winding resistance at different taps for all cores (Ω) (75°C)								
19.0	Maximum exciting current at all ratios (for all PS class cores)								
19.1	100% KPV (Knee point voltage) (mA)								
19.2	25% KPV (Knee point voltage) (mA)								
19.3	20% KPV (Knee point voltage) (mA)								
19.4	10% KPV (Knee point voltage) (mA)								
20.	Instrument security factor at different ratios.								
21.	Radio interference voltage at $1.1 V_r/3^{1/2}$ at 1.0 MHZ (Micro volts)								
22.	Whether auxiliary CT provided for metering winding								
23.	Corona extinction voltage (KV rms)								
24.	Partal discharge level (PC)								
25.	Total creepage distance (mm)								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1-1 A
26.	Primary								
26.1	No. of primary turns								
26.2	Material and cross-section of primary (mm ²)								
26.3	Type of primary								
27.	Whether CT is suitable for transportation horizontally.								
28.	Percentage current (ratio) error and phase displacement in minutes at rated burden and at								
28.1	5% rated current								
28.2	10% rated current								
28.3	20% rated current								
28.4	120% rated current								
29.	Percentage current (ratio) error and phase displacement in minutes at 25% rated burden and								
29.1	At 5% rated current								
29.2	At 10% rated current								
29.3	At 20% rated current								
29.4	At 120% rated current								
30.	Quantity of oil per CT (Litres)								
31.	Standard to which oil conforms generally.								
32.	Characteristics of oil (prior to filling)								
32.1	Breakdown voltage (KVrms)								
32.2	Dielectric dissipation constant								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1-1 A
	(tan delta)								
32.3	Water content (ppm)								
32.4	Gas content								
32.5	Interfacial tension at 27°C (N/m)								
32.6	Specific resistance								
32.6.1	At 90°C (Ωcm)								
32.6.2	At 27 [°] C (Ωcm)								
33.	Whether current transformers are hermetically sealed. If so, how ?								
34.	Total weight (Kg)								
35.	Transport weight (Kg)								
36.1	Temperature rise over an ambient temperature of 50°C for continuous operation at rated continuous thermal current.								
36.1	Winding								
36.2	Oil								
36.3	External surface of the core, metallic parts in contact with or adjacent to insulation.								
37	Whether CT characteristic curves enclosed.								
37.1	Ratio and phase angle curve								
37.2	Magnetisation curves								
37.3	Ratio correction factor curves.								
38.	DATA ON PRIMARY WINDING								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1-1 A
38.1	Rated primary current (A)								
38.2	No. of conductors in one turn								
38.3	No. of turns of primary								
38.4	Material of the primary conductors								
38.5	Size of the primary conductor (Bare/ Insulated (mm x mm)								
38.6	Cross-sectional area of each conductor (mm ²)								
38.7	Total cross-sectional area of primary winding (mm ²) conductors								
38.8	Current density(A/mm ²)								
	(i) At highest ratio								
	(ii) At intermediate ratio								
	(iii) At lowest ratio								
38.9	Short circuit current densiry (A/mm ²)								
	(i) At highest ratio								
	(ii) At intermediate ratio								
	(iii) At lowest ratio								
38.10	Ampere-turn of Primary (AT)								
	(i) At highest ratio								
	(ii)At intermediate ratio								
	(iii) At lowest ratio								
38.11	Length of primary conductor (m)								
38.12	Weight of primary winding (kg.)								
39.	CORE								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1 A
39.1	Material and grade of the core								
39.2	Thickness of core (mm)								
39.3	Net Iron cross-sectional area of core (mm ²)								
39.3.1	Core-1								
39.3.2	Core – 2								
39.3.3	Core – 3								
39.3.4	Core – 4								
39.3.5	Core – 5								
39.4	Mean magnetic path length (cm)								
39.4.1	Coré – 1								
39.4.2	Core – 2								
39.4.3	Core – 3								
39.4.4	Core – 4								
39.4.5	Core – 5								
39.5	Whether B-H curve for the core material, used, furnished ? (B-wb/m ² , H-AT/cm)								
39.6	Whether specific loss vs. flux density graph for the core material used furnished ?								
39.7	Axial length of core (mm)								
39.7.1	Core – 1								
39.7.2	Core – 2								
39.7.3	Core – 3								
39.7.4	Core – 4								
39.7.5	Core – 5								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1 A
39.8	Inside diameter / outside diameter of the cores (mm)								
39.8.1	Core – 1								
39.8.2	Core – 2								
39.8.3	Core – 3								
39.8.4	Core – 4								
39.8.5	Core – 5								
39.9	Weight of the core (kg)								
39.9.1	Core – 1								
39.9.2	Core – 2								
39.9.3	Core – 3								
39.9.4	Core – 4								
39.9.5	Core – 5								
40.	SECONDARY WINDINGS								
40.1	Rated secondary current (A)								
40.2	Material of the secondary windings								
40.3.	Size of the secondary conductor [Bare / Insulated] [mm]								
40.3.1	Core – 1								
40.3.2	Core – 2								
40.3.3	Core – 3								
40.3.4	Core – 4								
40.3.5	Core – 5								
40.4	Cross sectional area of the secondary conductor (mm ²)								
40.4.1	Core – 1								

SI. No.	Description	33	KV		13:	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1-1 A
40.4.2	Core – 2								
40.4.3	Core –3								
40.4.4	Core – 4								
40.4.5	Core – 5								
40.5	Current density of secondary windings (A/mm ²)								
40.5.1	Core – 1								
40.5.2	Core – 2								
40.5.3	Core – 3								
40.5.4	Core – 4								
40.5.5	Core – 5								
40.6	No. of secondary turns								
40.6.1	Core – 1								
40.6.2	Core – 2								
40.6.3	Core – 3								
40.6.4	Core – 4								
40.6.5	Core – 5								
40.7	No. of layers								
40.7.1	Core – 1								
40.7.2	Core – 2								
40.7.3	Core – 3								
40.7.4	Core – 4								
40.7.5	Core – 5								
40.8	No. of turns / layer								
40.8.1	Core – 1								
40.8.2	Core – 2								
40.8.3	Core – 3								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1 A
40.8.4	Core – 4								
40.8.5	Core – 5								
40.9	Average length / turn of secondary windings (mm)								
40.9.1	Core – 1								
40.9.2	Core – 2								
40.9.3	Core – 3								
40.9.4	Core – 4								
40.9.5	Core – 5								
40.10	Resistance of the conductor used for secondary winding per meter length at 75 ^o C (Ω/M)								
40.11	Weight of secondary windings (kg)								
40.11.1	Core – 1								
40.11.2	Core – 2								
40.11.3	Core – 3								
40.11.4	Core – 4								
40.11.5	Core – 5								
41	INSULATION								
41.1	Name and class of insulating material between core and secondary winding.								
41.2	Name/s of Insulating materials between secondary winding and primary windings.								
41.3	Insulating materials used to achieve grading of capacitance.								

SI. No.	Description	33	KV		13	2KV		220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1 A
42.	DIAMETER OF WINDINGS								
42.1	Inside / outside diameter of secondary windings (mm)								
42.1.1	Inside / outside diameter of secondary windings (mm)								
42.1.1	Core – 1								
42.1.2	Core – 2								
42.1.3	Core – 3								
42.1.4	Core – 4								
42.1.5	Core – 5								
42.2	Inside / outsde diameters of primary winding (mm)								
42.3	Minimum clearance from tank (mm)								
42.4	Minimum clearance from secondary to tank (mm)								
43.	TANK AND SECONDARY TERMINAL BOX								
43.1	Material of the CT tank								
43.2	Material of the CT secondary terminal box								
43.3	Thickness of CT tank material (mm)								
43.4	Thickness of CT secondary terminal box material (mm)								
43.5	Zinc coating of the CT tank (gm/m ²) as per relevant upto date ISS								
43.6	Zinc coating of the CT secondary terminal box								

SI. No. Description		33KV		132KV			220 KV	400 KV	
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1 A
	(gm/m ²) as per the relevant upto date ISS.								
43.7	Ingress protection rating of the secondary terminal box.								
43.8	Weight of the tank, fittings and other accessories (kg)								
44.	TERMINAL CONNECTOR								
44.1	Manufacturer's name								
44.2	Applicable standard								
44.3	Туре								
44.4	Material of connector								
44.4.1	Clamp body								
44.4.2	Bolts and Nuts								
44.4.3	Spring washers								
44.5	Rated current (Amp)								
44.6	Rated terminal load (Kg)								
44.7	Factor of safety								
44.8	Minimum thickness of any part (mm)								
44.9	Weight of clamp complete with hardwares (kg)								
44.10	Type test reports as per IS enclosed								
44.11	OGA drawing enclosed								
45.	INSULATOR								
45.1	Manufacturer's name								
45.2	Туре								
45.3	Applicable standards								

SI. No.	Description	33KV		ion 33KV 132KV		132KV			220 KV	400 KV
		a)400- 200-100A /1-1-1A	b) 800- 400-200A/ 1-1-1A	a) 800-400- 200A/ 1-1-1-1A	b)600-300- 150A/ 1-1-1-1A	c) 400- 200-100A / 1-1-1-1A	d)400- 200A/ 1-1-1-1A	1200-600- 300A/ 1-1-1-1-1A	2000-1000- 500A/ 1-1-1-1-1 A	
45.4	Height (mm)									
45.5	Diameter (top) (mm)									
45.7	Total creepage distance (mm)									
45.8.	Rated voltage (KV)									
45.9	Power frequency withstand voltage for 1 min. dry and wet. (KV – rms)									
45.10	1.2/50 micro-sec impulse withstand voltage (KVP)									
45.11	Corona extinction vollage (KV)									
45.12	Weight (Kg)									
45.13	Maximum allowable span (mm)									
45.14	Cantilever strength (Kg)									
45.15	The drawing enclosed.									
46.	Dielectric dissipation factor at 245/1.732KV (for 220KV C.T) and 145/1.732 KV (for 132 kv C.T.) at ambient temperature.									
47.	Accuracy class of standard C.T. to be used towards determination of ratio errors and phase angle errors for metering cores.									

FOR

CONTROL CABLE & POWER CABLE

1100V Cable (PVC & XLPE CONTROL & POWER CABLE)

The Contractor must complete a schedule for each size of cable supplied

ITEM NO.	DESCRIPTION	FF	BIDDERS
			OFFER
1	Standards to which the cable conforms	IS-1554/IEC 502	
2	Catalogue Number	-	

3	Conductor Material	-	
4	Conductor Strands	Number	
5	Conductor Shape	-	
6	Conductor cross sectional area	mm²	
7	Outer Diameter of Conductor	mm	
8	Number of Cores	—	
9	Reduced neutral conductor cross sectional area	mm²	
10	Insulation Material	-	
11	Minimum thickness of insulation	mm	
12	Nominal thickness of insulation	mm	
13	Outer Diameter over insulation	mm	
14	Nominal thickness of inner sheathing	mm	
15	Sheath Material	-	
16	Type of armouring	—	
17	Number and diameter/size of armour wires/strips	No/mm	
18	Minimum outersheath thickness	mm	
19	Nominal outersheath thickness	mm	
20	Overall diameter of cable	mm	
21	Minimum Bending Radius	mm	

DESCRIPTION	UNITS	BIDDERS OFFER	
Cable identification per Clause 9	-		
Rated Voltage per IEC 502/IS - 1554	kV		
Conductor DC resistance per km at 20°C	ohm/km		
-	Cable identification per Clause 9 Rated Voltage per IEC 502/IS - 1554	Cable identification per Clause 9 - Rated Voltage per IEC 502/IS - 1554 kV	Cable identification per Clause 9 - Rated Voltage per IEC 502/IS - 1554 kV

25	Conductor AC resistance per km at 20°C and 50Hz	ohm/km	
26	Maximum continuous rating of cable in the conditions outlined in Clause 4: System Conditions	А	
27	Minimum insulation resistance per km at 90°C	Mohm/km	
28	Maximum permissible continuous conductor temperature	°C	
29	Maximum permissible continuous outersheath temperature	°C	
30	DC test voltage for 15 mins. after installation	kV	
31	Delivery length per drum	m	
32	Weight of conductor per km	kg/km	
33	Weight of cable per km	kg/km	
34	Gross weight of full cable drum	kg	
35	Outer diameter of the cable drum	mm	
36	Width of cable drum	mm	
37	Maximum permissible cable pulling tension	kg	
38	Maximum permissible cable side wall pressure	kg	
39	Manufacturers Name	-	
40	Country of Origin	-	

FOR

CONDUCTOR, EARTH WIRE, INSULATORS

GUARANTEED TECHNICAL PARTICULARS OF CONDUCTOR

ACSR CONDUCTOR: MOOSE ZEBRA PANTHOR

SI. No. Description

1. Code Word

- 2. Maker's name address and Country.
 - a) Aluminum rods
 - b) Steel Wire/rods
 - c) Complete conductor
- 3. Stranding and wire diameter
 - a) Aluminum.
 - b) Steel.
- 4. Standard nominal copper area in sq. mm
- 5. Calculated equivalent aluminum area in sq. mm
- 6. Actual aluminum area in sq. mm.
- 7. Standard area of cross

section in sq. mm.

- a) Aluminum strand
- b) Steel strand
- c) Conductor
- 8. Diameter of complete conductor in mm.
- Minimum ultimate tensile stress of strand, in Kg/sq. mm. Before stranding and after stranding for
 - a) Aluminum strand.
 - b) Steel strand
- 10. Guaranteed ultimate tensile strength of conductor in Kg.
- 11. Minimum breaking load in Kg. Before stranding and after stranding for
 - a) Aluminum strand.
 - b) Steel strand.

- 12. Purity of aluminum rods.
- 13. Zinc coating of steel strand.
 - a) Uniformity of coating number and/duration of dips.
 - b) Minimum weight of coating gm/sq. mm.
- 14. Weight in Kg. per K.M.
 - a) Aluminum.
 - b) Steel.
 - c) Conductor.
- 15. Resistance in ohms per Km. at 20° c.
- Continuous maximum current rating of conductor in still air at 45° C ambient temperature, considering temp. rise of 50°C.
- 17. Modulus of elasticity of : Conductor.
- 18. Co-efficient of linear expansion per degree centigrade of.
 - a) Aluminum strand.
 - b) Steel Strand.
 - c) Conductor.
- 19. Percentage of carbon in steel wire.
- 20. Standard length of each peace in Km.
- Initial and final sags and tension and stringing charts, whether furnished.
- 22. Tolerance, if any on standard length.
- 23. Number of standard length in one reel.

- 24. Dimensions of the reel in cms.
- 25. Weight of the Conductor in one reel in Kg.
- 26. Weight of the reel in Kg.
- 27. Gross weight of the reel including weight of the conductor.
- 28. Wheather the conductor will be manufactured
 - as per the relevant Indian Standard Specification
 - & as per Section-IV 'Technical specification' of this specification.
- 29. Wheather the conductor will be Tested
 - as per the relevant Indian Standard Specification
 - & as per Section-IV 'Technical specification' of this specification.
- (Cause-12 of Section -IV of Technical Specification)
- 29. Other particulars, if any.

SL No.	DESCRIPTION		'7/3.15 mm	'7/3.66 mm
1. 2.	Maker's name, address and country Percentage of carbon content of the steel wire.			
3.	Particular of steel strands a) Number of strands.			
	b) Diameter	Mm		
	c) Standard sectional area	Sq.mm		
	d) Minimum ultimate tensile strength.e) Minimum breaking land	N/mm2		
	f) Final stress in steel wires	N/mm2		
		KN/mm2		
4.	(a) Uniformity of coating of number	Minutes		
	and duration of dips.	Number of		
	L	dips.		
	1.	-		
	2.			
	b) Minimum weight of coating	GM/m2		
5.	Standard overall diameter of ground wire.	Sq.mm		
6.	Area of cross section of ground wire.	Mm		
7.	Guaranteed ultimate tensile strength of	N/mm2		
	ground wire.			
8.	Maximum working tension	N/mm2		
9.	Resistance in ohms per KM at 20°C.			
10.	Standard length of ground wire.	Km.		
11.	Modulus of elasticity of ground wire.	Kg / cm2 Final Initial		
12.	Co-efficient of linear expansion.			
13.	Zinc coating :-			
	a) Number of one minute dip			
	b) Number of half minute dip.			
	c) Quality of zinc			
14.	Weight of coating on wire			
15.	Process of galvanising			

GUARANTEED TECHNICAL PARTICULARS OF THE GALVANIZED STEEL G.I. EARTH WIRE

GUARANTEED TECHNICAL PARTICULARS FOR INSULATORS

(SEPARATE SHEETS MAY BE FILLED IN FOR EACH VOLTAGE RATING & DIFFERENT KN RATING)

SI. No.	Description.	Single Suspensi on	Double suspension	Single Tension	Double Tension.
1.	2.	3.	4.	5.	6.
1.	Makers name and address and	0.		0.	
2.	country. Size and designation of Ball and socket and standard to which if will				
	conform mm.				
3.	No. of insulator discs per string.				
4.	Outside dia of the disc. Mm				
5.	Spacing – mm				
6.	Creepage distance of the single disc –mm				
7.	Electro- mechanical strength of				
8.	single disc. Kg. Withstand voltage of single disc.				
8.1	Power frequency: a) Dry-kV (rms)				
8.2	b) Wet-kV (rms Impulse voltage 1.2/50 micro second.				
	a) Positive-kV (peak)				
9.	b) Negative-kV (peak) Withstand				

SI. No.	Description.	Single Suspensi on	Double suspension	Single Tension	Double Tension.
9.1	voltage for the complete string. Power frequency:	With and			
	a) Dry-kV (rms)	without			
9.2	b) Wet kV (rms) Lighting impulse voltage 1.2/50 micro second.	ang.			
9.3	a) Positive kV(peak) b) Negative Kv(Peak) Switching surge voltage 250/2500 micro second (for 400KV only)	-do- -do-			
	a) Dry-kV (rms)				
10. 10.1	b) Wet kV (rms) Flashover voltage for the disc. Power				
	frequency:				
10.2	a) Dry-kV (rms) b) Wet kV (rms) Lighting impulse voltage 1.2/50 micro second.				
	a) Positive kV(peak)				
11.	b) Negative Kv(Peak) Flashover				

SI. No.	Description.	Single Suspensi on	Double suspension	Single Tension	Double Tension.
11.1	voltage for the complete string. Power frequency:				
	a) Dry-kV (rms)	With and without corona			
11.2	 b) Wet kV (rms) Lighting impulse voltage 1.2/50 micro second. a) Positive kV(peak) b) Negative Kv(Peak) 	ring.			

FOR

ISOLATORS

GUARANTEED TECHNICAL PARTICULARS FOR DISCONNECTOR

(ISOLATORS)

(To be filled in separately for Disconnectors of different voltage classes and types)

400 KV	<u>220 KV</u>	<u>132 KV</u>	<u>33</u>
			<u>KV</u>

- 1. Type / installation
- 2. Manufacturer's Name and Country of manufacure
- 3. standard/s according to which the isolator are manufactured
- 4. Maximum design voltage at which the isolator can operate (kv)
- 5. frequency (Hz)
- 6. Rated Voltage (kv)
- 7. Max. current that can be safely interrupted by the isolator

Inductive (A & % PF)

Capacitive (A & % PF)

- 8. Continuous current rating (Amps)
- 9. Rated short time current
- (i) For 3 second (KA rms)
- (ii) Rated peak short time current (kVp)

10. Current density at the minimum cross-section of

- a) Moving blade (Amps/Sq.mm)
- b) Terminal pad
- c) Contacts
- d) Terminal Connector

11. Max. temp rise of current carrying parts when carrying rated current continuously. (deg. C)

12. factor for specified site conditions.

- **13.** Derating Insulation levels.
- i) Impulse withstand voltage (kV peak)
- a) Phase to Earth

- b) Across isolating Distance
- ii) Switching surge withstand voltage (kV peak)
- (a) Phase to Earth
- (b) Across isolating Distance
- iii) Power frequency withstand voltage (kV rms)
- (a) Phase to Earth
- (b) Across isolating distance
- iv) Radio interference voltage at 1.1 times maximum line to ground voltage (micro volts)
- v) Corona inception voltage (kV rms)
- vi) Corona extinction voltage (KV rms)
 - 14. Minimum clearance in air:
- i) Between poles (mm)
- ii) Between live parts and earth (mm)
- iii) Between live part when switch is open
- (a) On the same pole (mm)
- (b) Between adjacent poles (mm)
- 15. Rated mechanical terminal load
- a) Load along the terminal connector side (kg)
 - ii) Load across the terminal connector side(kg)
 - 16. Torque required to operate the switch in Kg. m.
- 14. Contact zone
- (i) Horizontal deflection (mm)
- (ii) Vertical deflection (mm)
- (iii) Total amplitude of longitudinal movement w.r.t. conductor supporting fixing contact (mm)
- 15. Design and Construction
 - i) No. of Insulators per pole
- ii) Contacts
- a) Material and grade
- b) Cross-sectional area in sq.mm
- i) Moving Blades

- a) Material and grade
- b) Cross sectional area
- ii) Contact Support
- a) Material and size of channel / block
- b) Material and size of plate
- iii) Rain hood Material grade and size
- iv) Turn and twist mechanism
- a) Material and size of clamps
- b) Material and size of springs
- c) Whether springs are encased
- v) Nuts and Bolts.
- a) Size, material and grade in live parts.
 - b) Size material and grade in other parts
- viii) Insulator base plate
- Material and size of plate below insulators
- ix) Bearings.
- a) Material and size of housing
- b) No. of bearings, location and size
- x) Tandem pipe
- a) Size class and no. of pipes
- b) Size of shackle, screw
- c) No. of bearings / bush and its material and size
- xi) Type of inter lock
- xii) Down pipe size and class
- xiii) Type of universal / swivel joint
- a) Between bearing and down pipe
- b) Between down pipe and operating mechanismxiv) Operating mechanism
- a) Control cabinet
 - Material and thickness
 - **Degree of protection**

Type size and no. of cable glands

Whether removable gland plate provided.

b) Make type, rating and qty. of motors per isolator

Gears

Limit switches

Contactors

Over load relay

Single phase preventor

Auxiliary switch

Terminal blocks

Insuiator wires

HRC fuses

Pole discrepancy relay

Timer

Space Heater

Interlocks

- xv) Insulators
- a) Type
- b) No. of units per insulator stack.
- c) Rating of insulator (kV)
- d) Height of each insulator stack (mm)
- e) Bolt circle diameter (mm)
- f) Tensile strength (kg)
- g) Compressive strengh
- h) Torsional strength (kg. m)
- i) Cantilver strength upright (kg)
- j) Power frequency dry flash over voltage (kV) rms
- k) Power frequency wet flash over voltage (kV) rms
- l) Power frequency puncture voltage (kV) rms
- m) Impulse flash over voltage (positive wave) (kV) peak
- n) Impulse withstand voltage (kV) peak
- o) Power frequency withstand voltage (kV) rms

- p) Visual discharge voltage level (kV) rms
- q) Creepage distance

Total (mm)

r)

Protected (mm)

- Dry arcing distance (mm)
- xvi) Base
- a) Size of steel sections used
- b) Overall size
- c) Total weight
 - xvii) Terminal connectors
- a) Clamp Body
- **Alloy Composition**

Plating if any

Area at min. cross section

b)Bolts and nuts size

Alloy composition

- **Tensile strength**
- c)Type of washers used
- d)Materials of braids
- e)Temperature rise when carrying rated current at 50 deg. C ambient (deg.C)
- f)Weight of each type of clamp (kg)

List of bought out items.

Sl. Particulars of components Qty. Rating Make Type No.

- **19.0** List of test certificates (Type and routine)
- 20.0 List of drawings furnished.

FOR

SURGE ARRESTORS

01	GUAKANIEED IEC				
S1	Description	<u>390 KV</u>	<u>216 KV</u>	<u>120 KV</u>	<u>30 KV</u>
No.	Bidder's Name and Address.				
2	Manufacturer's Name.				
3	Manufacturer's type designation.				
4	Applicable standards.				
5	Arrester class and type.				
6 7	Rated Arrester Voltage (KV rms).				
/	Maximum continuous operating				
	voltages (MCOV) at design ambient				
0	temperature (KV-rms).				
8	Nominal discharge current $(8/20)$				
9	micro second wave) (KA). Minimum discharge capability		-		
9	referred to rated voltage at minimum				
10	of discharge characteristics (KJ/KV). Line discharge class as per IEC.				
10	Maximum switching surge residual				
	voltage at 1 KA (KVP) for				
	390KV,216KV, 120KV and for				
	30KV at 500A.				
12	Maximum switching surge residual				
	voltage at 1 KA for 216 KV.				
13	Maximum residual voltage for 8/20				
	micro-second current wave.				
	(a) At 50 % nominal discharge				
	current.				
	(b) At 100 % nominal discharge				
	current.				
	(c) At 200 % nominal discharge				
	current.				
14	Maximum residual voltage with 1				
	micro-second current wave at 10				
	KAP (KVP).				
15	One minute power frequency (dry) &				
	(wet) withstand voltage of arrester				
	(KV-rms).				
16	Impulse withstand test voltage of				
	arrester housing with 1.2/50 micro-				
	second wave (KVP).				
17	High current short duration $(4/10)$				
10	micro-second impulse wave) (KAP).		-		
18	Low current long duration (KAP).				
19	Reference voltage and corresponding				

	In formation of the formation (IVII)		T		
	reference current of arrester (KV)				
	(mA).				
•					
20	Maximum internal leakage current by				
	its rms or peak value and both				
	resistive and capacitive component				
	separately at				
	(a) COV (resistive/capacitive) (mA).				
	(b) 1.1 COV (resistive/capacitive)				
	(mA).				
	(c) COV at 150°C				
	(resistive/capacitive) (mA).				
	(d) Reference voltage				
	(resistive/capacitive)(mA).				
21	Pressure relief class.				
22	Are the protection levels affected by				
	pollution of external insulation.				
23	Energy absorption capability per				
	operation of the arrester, during a				
	switching surge discharge (KJ).				
24	Maximum amount of energy that may				
27	be despatched into the arrester during				
	discharge assuming that discharge				
	takes place within 1 minute period				
	and state the switching surge current				
	(KJ/KA).				
25	Internal pressure required to operate				
23	pressure relief device as a percentage of				
	burst pressure of porcelain (KJ) & %.				
26	Dynamic over-voltage withstand				
20	capability (KV-rms).				
	(a) For 0.1 Second.				
	(b) For 1 Second.				
	(c) For 10 Seconds.				
	(d) For 100 Seconds.				
27		<u> </u>			
27	Minimum prospective symmetrical fault summer $(K A)$				
20	fault current (KA).				
28	Rejection rate of ZnO blocks during				
	manufacturing and operation for the				
	past three years (%) separately.				
	(a) 2004-2005.				
	(b) 2005-2006.				
	(c) 2006-2007.				
29	ZnO DISC DATA.				
	(a) Rated voltage of ZnO disc. (KV-				
	rms).				

(b) No of $7nO$ discs in a unit (Nos.)				
· · · ·				
(Kg.)				
· / • •				
(c) Type.				
(d) Material of connector.				
[i] Clamp body.				
[ii] Bolts and Nuts.				
[iii] Spring washers.				
(e) Rated current (Amps.)				
(f) Rated terminal load (kg.)				
(g) Factor of safety.				
(h) Minimum thickness of any part				
	TERMINAL CONNECTOR. (a) Manufacturer's Name.(b) Applicable standards.(c) Type.(d) Material of connector.[i] Clamp body.[ii] Bolts and Nuts.[iii] Spring washers.(e) Rated current (Amps.)(f) Rated terminal load (kg.)(g) Factor of safety.	(c) No. of units of arrester (Nos.) (d) Height/thickness of ZnO discs (mm). (e) Diameter of ZnO disc (mm). EXTERNAL INSULATION. (a) Type. (b) Applicable standard. (c)(i) Lightning Impulse withstand test voltage of housing with 1.2/50 micro sec. Wave (KVP). (ii) Wet switching impulse test voltage (KVP) (d) One minute power frequency withstand voltage of arrester housing KV rms. [i] Dry. [ii] Wet. (e) Total creepage distance of arrester housing (mm). (f) Cantilever strength of complete arrester (Kg-m). OVER ALL DIMENSIONS. (a) Overall Height (mm). (b) Height upto top of terminal pad from mounting plane (mm). (c) Material of terminal pad. (d) Size of terminal pad (mm). (e) Mounting dimensions and diameter of mounting holes (mm). (f) Diameter of insulator (mm). (g) Total weight of complete arrester (Kg.) TERMINAL CONNECTOR. (a) Manufacturer's Name. (b) Applicable standards. (c) Type. (d) Material of connector.	(c) No. of units of arrester (Nos.) (d) Height/thickness of ZnO discs (m)). (e) Diameter of ZnO disc (mm). EXTERNAL INSULATION. (a) Type. (b) Applicable standard. (c)(i) Lightning Impulse withstand test voltage of housing with 1.2/50 micro sec. Wave (KVP). (ii) Wet switching impulse test voltage (KVP) (d) One minute power frequency withstand voltage of arrester housing KV rms. [ii] Dry. [ii] Wet. (e) Total creepage distance of arrester housing (mm). (f) Cantilever strength of complete arrester (Kg-m). OVER ALL DIMENSIONS. (a) Overall Height (mm). (b) Height upto top of terminal pad from mounting plane (mm). (c) Material of terminal pad. (d) Size of terminal pad (mm). (f) Diameter of insulator (mm). (g) Total weight of complete arrester (kg.) TERMINAL CONNECTOR. (a) Manufacturer's Name. (b) Applicable standards. (c) Type. (d) Material of connector.	(c) No. of units of arrester (Nos.) (d) Height/thickness of ZnO discs (mm). (c) Diameter of ZnO disc (mm). EXTERNAL INSULATION. (a) Type. (a) Type. (b) Applicable standard. (c) (i) Lightning Impulse withstand (c) (i) Lightning Impulse withstand test voltage of housing with 1.2/50 (ii) Wet switching impulse test voltage (KVP) (d) One minute power frequency withstand voltage of arrester housing KV rms. [i] Dry. [ii] Wet. (c) Total creepage distance of arrester (c) Total creepage distance of arrester housing (mm). (f) Cantilever strength of complete arrester (Kg-m). OVER ALL DIMENSIONS. (a) Overall Height (mm). (b) Height upto top of terminal pad (f) form mounting plane (mm). (c) Material of terminal pad. (d) Size of terminal pad. (d) Material of complete arrester (material of terminal pad. (d) Material of complete arrester (f) Diameter of insulator (mm). (e) Mounting dimensions and diameter of mounting holes (mm). (f) Diameter of insulator (mm). (f) Diameter of insulator (mm). (g) Total weight of complete arrester (h) Applicable standards. (c) Type. (

	(mm).		
	(i) Weight of clamp complete with hard ware (kg.)		
	(j) Type test report as per IS enclosed.		
	(k) OGA Drawing enclosed.		
33	INSULATORS.		
	(a) Manufacturers Name.		
	(b) Type.		
	(c) Applicable standards.		
	(d) Height (mm).		
	(e) Diameter (top)(mm).		
	(f) Diameter (bottom) (mm).		
	(g) Total creepage distance (mm).		
	(h) Rated voltage (KV – rms).		
	(i) Power frequency withstand voltage for 1		
	min. dry and wet (KV – rms).		
	(j) 1.2/50 micro - second impulse withstand		
	voltage (KVP)		
	(k) Corona Extinction voltage (KV-rms)		
	(l) Weight (kg.)		
	(m) Maximum allowable span (mm).		
	(n) Cantilever strength (Kg – m).		

FOR

33/0.433 KV, 315 KVA STATION TRANSFORMER

GUARANTEED TECHNICAL PARTICULARS FOR 33/0.433 KV , STATION TRANSFORMER:-

- 1. Name of the manufacturer.
- 2. Service.
- 3. KVA Rating:
 - a) H.V. Winding. KVA
 - b) L.V. Winding.
- 4. Highest system voltage/Nominal voltage.

KVA

a)	H.V. Winding.	KV
b)	L.V.Winding	KV

- 5. Rated frequency. Hz
- 6. Number of phases.
- 7. Connections:
 - a) H.V. Winding.
 - b) L.V. Winding.
- 8. Connection symbol (See IS: 2026 (Part-IV-1977).
- 9. Tappings:
 - a) Range
 - b) Number of steps for high voltages variation.

10. Reference ambient temperature:-

	a)	Maximum ambient air/temperature.	°C.
	b)	Maximum daily average ambient air	°C.
		temperature.	
	c)	Maximum yearly average ambient	°C.
		air temperature.	
	d)	Minimum ambient air temperature.	°C.
	e)	Maximum cooling water temperature.	°C.
11.	Тур	e of cooling (See IS-2026 (Part-II)/1977.)	
12.	Tem	perature rise (See 2026 (Part-II)/1977)	
	a)	Temperature of oil	°C.
	b)	Winding.	°C.
13.	i)	Total loss at rated nominal voltage	KW
		at normal tap & rated frequency.	

- ii) Stray loss at 75°C.
- iii) % Regulation.
- 14. (A) Component losses.
 - a) No-load loss at rated nominal voltage KW and normal frequency.

b) Load loss at rated current and rated frequency at normal tapping at 75°C. & at extreme taps.

- (B) Resistance at normal tap & at 75°C.
- i) H.V.
- ii) L.V.
- 15. Impedance voltage & percentage Impedance at full rated current at 75°C. for the
 - a) Normal tap.
 - b) Lowest tap position

Percentage.

- c) Highest tap position.
- 16. Reactance at rated current and rated frequency.

17. No load current at rated nominal voltage and rated frequency and at 50%, 75%, 100%, 110% & 121%

voltage & at rated frequency.

18.	Insulation level (See IS-2026 (Part-III/1977).			
i)	a) Separate source power frequency voltage withstand H.V. Winding KV rms.			
ii)	L.V. Winding.	KV rms.		
i)	b) Induced over voltage withstand. H.V. Winding.	KV rms.		
ii)	L.V. Winding.	KV rms.		
	c) Full wave lighting impulse withstand voltage			

with time vrs. peak voltage characteristic curves. H.V. Winding. i) ii) L.V. Winding. d) P.I. value. 19. Efficiencies at 75°C at unity power factor. a) At full load. Percent At ³/₄ full load -dob) At 1/2 full load -doc) d) At 120% of full load. 20. **Regulation at full load at 75°C** At unity power factor. a) At 0.8 power factor loading & lagging. b) 21. Equipment for ONAN cooling. a) State. i) No.of Radiators on main tank. ii) Make & type **Total radiating surface** iv) Thickness of radiator fins **Clear distance between fins** v) Width of radiator fins vi) 22. Number of coolers or cooler banks per transformer 23. Rating of each cooler or cooler bank. 24. Terminal arrangement. a) High voltage. Low voltage. b) Neutral. **c**) 25. **Approximate masses:-**Core Kg. a) b) Winding. Kg. Tank, fittings & accessories. (Name of Kg. c) accessories to be mentioned). d) Oil. Kg.

KV Peak.

KV Peak.

-do-

-do-

f)	e) Core coil assembly radiators	Kg. Kg.
g)	Total mass	Kg.
26.	a)Approximate quantity of oil required for first filling. Name of the manufacturer of oil used	Ltrs.
0)	Traine of the manufacturer of on used	
27.	Approximate tank dimensions for	
	over all dimensions.	
sic	 a) Length b) Breadth. c) Height. d) Thickness of main tank cover plate, de & bottom plate. 	mm mm mm mm
Le	e) Tank inside & outside dimension. ength/breadth/height. No. of tubes in each	mm
re	diator. Tube length in copper, thickness	
&	dia. Each side tubes (Nos.).	
28.	Despatch details.	
	a) Approximate mass of heaviest package.	Kg.
	b) Approximate dimensions of largest package.	C
	i) Length. Breadth.) Height.	mm mm mm
29.	Un-tanking height.	mm
30.	Additional technical particulars.	
	i) (a) i. Maximum flux density at highest system	Tesla or Wo/m².
	voltage & 48.5 c/s frequency.	
	ii) Maximum flux density at rated system	
	voltage & rated frequency.	
	(b) Maximum current density in windings.	Amps/Sq.Cm

(c) Size of conductor used.	HV/LV
High voltage.	
Low voltage.	
ii) Efficiency at 75°C and 0.8 P.F. lagging	
At full load.	Percent.
At ¾ full load	-do-
At ½ full load	-do-
Over loading capacity & efficiency.	
iii) Load at which maximum efficiency occurs.	-do-
iv) Maximum efficiency.	Percent.
v) Impulse level with 1/50 Micro.S. Wave.	
High voltage	KV
Low voltage	KV
vi) No-load loss at 110% rated nominal	
voltage and rated frequency.	KV
vii) No load current at 110% & 121% of nominal	
voltage & rated frequency.	Percentage.
viii) Type of winding.	
High voltage.	
Low voltage.	
No. of turns of H.V.	
No. of turns of L.V.	
ix) Insulation materials.	
Turn insulation high voltage.	
Turn insulation low voltage.	
Insulation core to low voltage.	
Insulation high voltage to low voltage.	
x) Clearance:-	
Minimum clearance between phases.	
a) In oil. b) Out of oil.	mm mm
Maximum clearance high voltage to	mm
tank in oil.	mm

Minimum clearance high voltage to earth in oil. mm xi) Minimum clearance height for lifting core & windings from rank. mm. 31. CORE :-Core materials used. (grade & thickness). (i) (Watts/Kg. curve to be (ii) Loss in watts/Kg. of core materials corresponding to desired flux densities. furnished along with the bid.). (iii) EMF per turn (iv) Core circumcircle dia (d). No. of core bolt holes per phase. **(v)** Dia of each core bolt holes in mm. (vi) (vii) Net iron section (cm²). Limb/Yoke. (viii) Weight (Kg.) Total GI (Kg.) (ix) (X) Total (KW).

No. of steps.	1	2	3	4
Stack in mm.				
Width of core in mm.				
Stacking factor of core.				
32.(a) <u>WINDING :-</u>				
Current per phase (Amp.)) LV	HV		HV regulating.
conductor bare (mm) No.	of			

conductor insulation (mm). Conductor section (mm²) Current density (A/mm²) Turns per phase (T). Coils per limb. Arranged. Turns per coil. Turns per layer. Layers per coil. Winding depth. Coil dia inside. Coil dia outside. Length of mean turns. Resistance at 75°C, Total 1² R including stray at 75°C, Weight of copper with/without insulations. (b) Radiators provided (Nos.). No. of fins provided. Radiator size in mm (Length x wide x fin Nos.) Loss to be dissipated by Radiators in KW. Dissipation per fin at 50°C. Thermal head in mm.

Radiator area.

33. <u>Oil data</u>:-

1. Quantity for first filling.

Ltr.

- 2. Grade of oil used.
- 3. Maker's name.
- 4. BOV at the time of filling.
- 5. Type of oil.
- 34. Make of breather and type with capacity of silica gal filled in grams.

35.	Inte	Inter layer insulation provided in design for:-					
	1.	Top and bottom layer.	mm				
	2.	In between all layers.	mm				
	3.	Details of insulation.	mm				
	4.	Whether wedges are provided at					
		50% turns of the coil.					
36.	Insu	llation materials.					
	a)	For conductors.	H.V.				
	b)	For core.	L.V.				
37.	Part	ticulars of bushings:-					
	1.	1. Maker's name.					
	2.	2. Type IS-3347/IS-1180.					
	3.	Rating as per I.S.					
	4.	Dry flash over voltage					
		KV					
	5.	We flash over voltage					
		KV.					
38.	I.R.	value at 30°C.					
	HV/	HV/E					
	LV/	LV/E					
	HV/	LV					
39.	Pola	risation Index :-					
	Mea	Measurement of Insulation resistance at					
	10 n	ninutes/1 minute.					
	HV/	Е.					
	LV/	LV/E.					
	HV/	LV.					

FOR

CONTROL & RELAY PANEL

TECHNICAL DATA REQUIREMENTS

<u>CONTROL AND RELAY PANELS</u> (Bidder's Name) ------

1.	Name and address of Manufacturer of panels 1	
2.	Manufacturer's type and designation	2

3. Type of construction (Simplex /duplex) 3.

4.	Thickness of sheet steel (i) Front (ii) Back (iii) Sides	4. i) ii) iii)
5.	Degree of protection	5
6.	Name of the manufacturer of relays.	6
7.	DC voltage of the relays	7
8.	Make and Model of static (o.2 accuracy	y class) 8
	Type) energy meters	
9.	Confirm whether offered manufacturer Panels and protective relays have teste Commissioned & they are in successfu For at least two years in 400 /220/132/ For 400/220/132 KV Sub-Station	ed Il operation
1).		
	FYRANSMISSION LINE PRO prical Distance protection Scheme (M	
1.	Name and address of Manufacturer of	Relay/panels 1
2.	Manufacturer's type and designation 2	
3. 4.	Switched or Non-switched type (is 3 It with separate measurements for Single/three phase faults) Setting range of off set feature 4	
5.	Whether the relay is having self 5 Monitoring feature.	
6.	Whether relays is compatible for 6 PLCC equipment and can be used for Permissive Under reach/over reach /Blocking scheme etc.	
7.	Suitable for single and three phase Tri	p?7
8.	Type of shaped characteristic	8
9.	Whether it is communicable to other re	lays 9
	of different manufacturer. Also mention	1 the
	communicating protocol.	
10.	Features like broken conductor, SOTF,	Distance 10
	to fault locater & other features as per	Tech Spec

are available or not.

11.	No of tripping contacts with making Capacity of 30 amp for 0.2 seconds.	11
12.	In case 16 contacts as per above Clause are not available with the distance rela Offered, type tripping relays being offered.	12 ay
13.	Maximum operating time for at 50% of the Reach setting of 2 ohms and 10/20 ohms (with CVT) including all trip relays, if any (Bidder is required to enclose isochronic Curve with CVT on line) a) at SIR=4 a) b) at SIR=15, (3 phase faults)b) c) at SIR=15 (other faults) c)	
14.	IDMT earthy fault relay meeting Normal 14 Inverse Characteristics as per IEC 60253 Is being offered as built in feature for 400/220/	
15.	If no, type of IDMT relay being offered 15	
16. 17.	 Built in feature offered with the relay (YES/NO a) Disturbance recorder b) Fault locater c) Over voltage (one stage only) d) Auto recluse along with Dead line e) Charging and check synchronizing. Indicate the no. of Binary Input & Out put contact 	a) b) c) d) e)
(B) 1.	Numerical Distance protection Scheme (Main Name and address of Manufacturer 1	,
2.	Manufacturer's type and designation 2	
3. 4.	it with separate measurements for Single/three phase faults)	
5.	Whether the relay is compatible for PLCC Equipment and can be used for permissive Under reach/over reach/Blocking scheme etc.	5
6. 7. 8.	Suitable for single and three phase Trip Type of shaped characteristic No of tripping contacts with making Capacity of 30 amp for 0.2 seconds.	6 7 8

9.	In case 16 contacts as per above 9 Clause are not Available with the distance relay Offered, type of tripping relays being offered.
10.	Maximum operating time for at 50% of the Reach setting of 2 ohms and 10/20 ohms10.(with CVT) including all trip relays, if any (Bidder is required to enclose isochronic Curve with CVT on line)a)a)at SIR=4a)at SIR=15, (3 phase faults)b)at SIR=15 (other faults)c)at SIR=15 (other faults)c)c)
11.	 Built in feature offered with the relay (YES/NO) a) Disturbance recorder b) Fault locator c) Over voltage (one stage only) c) Over voltage (one stage only) c) Auto recluse along with Dead line d) Charging and check synchronizing.
	ACKUP DIRECTIONAL OVER CURRENT EARTH FAULT PROTECTION SCHEME(Numerical)
1.	Name and address of Manufacturer 1
2.	Manufacturer's type and designation 2
3.	Three over current and one E/F elements 3
	Are whether independent or composite unit
4.	Type of relay (Numerical)4.
5.	Directional sensitivity. 5
6.	Whether characteristics conform to IEC 255-3 6
7.	Over current unit setting range inverse time 7
8.	Earth fault unit setting range inverse time8.
9.	VT Fuse failure relay/ feature included 9 For alarm.
10.	Whether it is communicable to other relays 10
	of different manufacturer. Also mention the
	communicating protocol.

(D) LINE OVER VOLOTAGE PROTECTION RELAY

1.	Name and address of Manufacturer.	1
2.	Manufacturer's type and designation	2

3.	Type of relay (Electromechanical/static/Numerical)3.	
4.	Operation indicator provided?	4
5.	Operating time	5
6.	Resetting time	6
7.	Whether monitors all three phases?	7
8.	Built in feature of Main/Main 2 distance Relay is offered. If so, which stage is Offered as built in	8

(E) DISTANCE TO FAUALT LOCATOR

1.	Name and address of Manufacturer of p	anels	1
2.	Manufacturer's type and designation		2
3. 4. 5. 6. 7. 8.	Built in feature of Main/Main 2 distance Relay is offered	4 5 6 luded? 7	3
(F) DI	STURBANCE RECORDER a. Acquisition unit.		
1.	Name and address of Manufacturer .	1	
2.	Manufacturer's type and designation	2	
3.	No. of analogue channels	3	
4.	No. of digital recording channels.	4	
5.	Built in feature of Main 1/ Main 2 distance	es.5	
	Relay is offered.		
6.	Pre-fault memory (milli seconds)	6	
7.	Post fault memory (seconds)	7	
8.	Total storage memory is seconds.		8
9.	Sampling Frequency.		9

10.	Resolution of the event channels (ms)	10	
11.	Time display present?		
12.	Data out put in COMTRADE is available.		
b. Eva	aluation Unit.		
1.	Name and address of Manufacturer		1
2.	Manufacturer's type and designation		2
3.	No. of acquisition unit that can be connected`		3.
4.	To one evaluation unit. Technical parameters of evaluation unit		4.
	A. Processor and speed.		Α.
	B. RAM and hard disk capacity.		В.
	C. Additional facilities.		С.
	D. Details of printer.		D.
5.	Details of power supply arrangement for Acquisition unit (including printer).	5.	
(G) A	UTO RECLOSE RELAY		
1.	Name and address of Manufacturer.		1
2.	Manufacturer's type and designation.		2
3.	Electromechanical/ static /numerical.		3
4.	Auto re closure relay along with Dead line char And check synchronizing relay (For 132 KV Lines) offered as a part of distance relay.	ging	4.
5.	Built in feature of Main 1/ Main 2 distances.		5
	Relay is offered.		
6.	Suitable for single and three phase?		5
7.	Single phase dead time setting Range.		6
8.	Three phase dead time setting range.		7
9. 2.)	Reclaim time setting range.		8
TRA	NSFORMER PROTECTION		

a) Differential relay.

1. Name and address of Manufacturer

1.

2.	Manufacturer's type and designation	2
3.	Second harmonic restraint provided.	3
4.	Whether three instantaneous units provided	4
5.	Operating current setting range.	5
6.	Bias setting range,.	6
7.	Operating time at 5X setting current.	7
8.	Resetting time.	8
9.	How ratio / phase angle corrections are being done (inter posting transformer/ internal feature in the relay)	9
10. 11. 12.	Whether numerical or not Fifth Harmonic restraint feature. Communication protocol	10 11 12
1.	b) Restricted Earth Fault Protection Name and address of Manufacturer	1
2. 3. 4.	Manufacturer's type and designation Operating time at 2 x setting. Whether numerical	2 3 4
5.	Whether suitable for all type of transformer windings or not.	5
5.		5
5.	windings or not.	5
	windings or not. c) Over Fluxing relays.	
1.	windings or not. c) Over Fluxing relays. Name and address of Manufacturer	1
1. 2.	windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation	1 2
1. 2. 3.	windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics	1 2 5
1. 2. 3. 4.	windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics Maximum operating time.	1 2 5 6
1. 2. 3. 4. 5.	 windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics Maximum operating time. Accuracy of operating time. 	1 2 5 6 7
1. 2. 3. 4. 5.	windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics Maximum operating time. Accuracy of operating time. Resetting time.	1 2 5 6 7
1. 2. 3. 4. 5. 6.	 windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics Maximum operating time. Accuracy of operating time. Resetting time. d) Directional O/C and E/F relays. 	1. 2. 5. 6. 7. 8.
1. 2. 3. 4. 5. 6.	 windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics Maximum operating time. Accuracy of operating time. Resetting time. d) Directional O/C and E/F relays. Name and address of Manufacturer 	1. 2. 5. 6. 7. 8. 1.
1. 2. 3. 4. 5. 6. 1. 2.	 windings or not. c) Over Fluxing relays. Name and address of Manufacturer Manufacturer's type and designation Whether inverse time operating characteristics Maximum operating time. Accuracy of operating time. Resetting time. d) Directional O/C and E/F relays. Name and address of Manufacturer Manufacturer's type and designation 	1. 2. 5. 6. 7. 8. 1. 2.

	a)	Inverse time	a)
	b)	High set	b)
6.	Earth	fault unit setting range.	7
	a)	Inverse time	a)
	b)	High set	b)
7.	Whet	her numerical	7
8.	Featu	ures of disturbance recording	8

3)

GENERAL PROTECTION / MONITORING EQUIPMENT

a) Trip Circuit Supervision relay.

1.	Name and address of Manufacturer	1
2.	Manufacturer's type and designation	2
3.	Whether pre-closing and post closing Supervision provided?	3
4.	Time delay.	4
	b) High Speed Trip Relays.	
1.	Name and address of Manufacturer	1
2.	Manufacturer's type and designation	2
3.	 Contact rating. a) Making and carry continuously b) Make and carry for 0.5 sec. c) Break. i) Resistive load. ii) Inductive load. (With L/R= 40 milli sec.). 	3 a) b) c) l) li)
4.	Operating time at rated voltage (maximum)	4
5.	Resetting time	5
6.	Whether supervisory relays included.	6

c) Local breaker back-up protection.

- Name and address of Manufacturer 1. 1. 2.....
- Manufacturer's type and designation 2.

4) BUS BAR PROTECTION

1.	Name and address of Manufacturer	1
2.	Manufacturer's type and designation	2
3.	Type of relay (Numerical)	3
4.	Principle of operation (Biased.High/Low impedance)	4
5.	Operating time	5
6.	Resetting time.	6
7.	Resetting ranges. (i) Current. (ii) Time.	7 (i) (ii)
8.	Whether will it cause tripping for the differential Current below the load current of heavily Loaded feeder (Bidder shall submit application Check of the same).	8
9. 10.	Whether LBB protection features available. Features of disturbance recording	9 10

11. Communication protocol

11.....

5) Meters and Instruments Indicating meters.

1.	Name and address of Manufacturer	1
2.	Manufacturer's type and designation	2
3.	Operating principle or type of movement.	3
4.	Range:	4
	(i) Voltage.	(i)

	(ii)	Current	(ii)
	(iii)	Frequency	(iii)
	iv)	Megawatt	(iv)
	V)	Megavar	(v)
5.	Accur	acy class.	5
6.	Total	deflection angle	6
7.	Overa	Il dimensions in mm.	7
8.	Burde	n	8
	(i)	Current coil	(i)
	(ii)	Voltage coil.	(ii)
9.	Digita	I type	9
	a) Re	cording Meter for voltage	
1.	Name	and address of Manufacturer	1
2.	Manu	facturer's type and designation	2
3.	Accur	acy class.	3
4.	Full s	pan response time	4
5.	ls it st	rip type recorder/ digital type	5
6.	lf it is	digital type	6
	i)	No of channels beings used.	I)
	ii)	Whether time tagged information is available	ii)
	iii)	Whether EMNC./EMI compatibility is tested	iii)
	b) Re	cording Meter for Current	
1.	Name	and address of Manufacturer	1
2.	Manu	facturer's type and designation	2
3.	Accur	acy class.	3
4.	Full s	pan response time	4
5.	ls it st	rip type recorder/ digital type	5
6.	If it is	digital type	6
	i)	No of channels beings used.	I)
	ii)	Whether time tagged information is available	ii)
	iii)	Whether EMNC./EMI compatibility is tested	iii)

c) Recording Meter for MW

1.	Name	and address of Manufacturer	1
2.	Manut	facturer's type and designation	2
3.	Accura	acy class.	3
4.	Full sp	oan response time	4
5.	ls it st	rip type recorder/ digital type	5
6.	If it is	digital type	6
	i)	No of channels beings used.	I)
	ii)	Whether time tagged information is available	ii)
	iii)Wh	ether EMC./EMI compatibility is tested i	ii)
	d) Re	cording Meter for MVAR	
1.	Name	and address of Manufacturer	1
2.	Manut	facturer's type and designation	2
3.	Accura	acy class.	3
4.	Full sp	oan response time	4
5.	ls it st	rip type recorder/ digital type	5
6.	If it is	digital type	6
	i)	No of channels beings used.	I)
	ii)	Whether time tagged information is available	ii)
	iii)Wh	ether EMC./EMI compatibility is tested	iii)
	e) Red	cording Meter for frequency.	
1.	Name	and address of Manufacturer	1
2.	Manut	facturer's type and designation	2
3.	Accura	acy class	3
4.	Full sp	oan response time.	4
5.	ls it st	rip type recorder/ digital type	5
6.	If it is	digital type	6
	i)	No of channels beings used.	I)
	ii)	Whether time tagged information is available	ii)
	iii)	Whether EMC./EMI compatibility is tested	iii)

6) OTHERS:

a) Terminal Block

1.	Nam	ne and address of Manufacturer	1
2.	Man	ufacturer's type and designation	2
3.	Rate	ed current.	3
4.	Rate	ed voltage.	4
5.		mum no. of conductors of area nm² suitable for connection. All circuits except CT./P.TCircuits.	5. (i)
	(ii)	C.T. Circuits.	(ii)
	b) S	witches.	
	i) Co	ontrol Switches.	
1.	Nam	ne and address of Manufacturer	1
2.	Man	ufacturer's type and designation	2
3.	No.o	of contacts.	3
4.	Туре	e of handle.	4
5.	Rati	ng of handle.	5
6.	Rati	ng of contacts.	6
	a)	Make and carry continuously.	a)
	b)	Make & carry for 0.5 sec.	b)
	C)	Break resistive load, in Amps (d.c)	c)
	d)	Break inductive load with L/R=40 m.sec inn Amps. (d.c)	d)
7.		of switch in terms of million mechanical rations	7.
	ii) S	ynchronizing switch	
1.	Nam	ne and address of Manufacturer	1
2.	Man	ufacturer's type and designation	2
3.	Con	tact ratings.	3
4.	No.o	of positions.	4
5.	Ren	novable handle type?	5
6.	No.d	of contacts	6
	iii) l	ndicating Lamps.	

4		4
1.	Name and address of Manufacturer	1
2.	Manufacturer's type and designation	2
3.	Ratings	
	(i) Current	(i)
	(ii) Voltage	(ii)
	(iii) Wattage	(iii)
4.	Whether series resistors are provided?	4
5.	If series resistors provided, give	5
	(i) Ohmic value	(i)
	(ii) Wattage	(ii)
6.	Life of Lamps in burning hours.	6
7.	Permissible voltage variation	7
8.	Whether LED type	8
	iv) Push Buttons.	
1.	Name of Manufacturer.	1
2.	Manufacturer's type and designation	2
3.	Contact ratings.	3
4.	No.of contacts	4
	v) Semaphore Indicators.	
1.	Name and address of Manufacturer	1
2.	Manufacturer's type and designation	2
3.	Is colour similar to mimic?	3
4.	No.of positions	4
5.	Burden DC	5
6.	Is the coil continuously rated?	6
	vi) Trransducers.	
1.	Make	1
2.	type & Model No.	2
3.	Nominal AC input voltage.	3
4.	Frequency.	4
5.	Input measuring Range	5

6.	Outpu	t current range.	6
7.	Accura	acy range.	7.
8.	Respo	onse time.	8
9.	A.C. ri	pple on output	9
10.	Load F	Resistance (Maxm.)	10
11.	Auxilia	ary supply voltage	11
	vii) Ar	nnunciators.	
1.	Make		1
2.	Туре 8	& Model No.	2
3.	Static/	electromechanical	3
4.	No. of	lamps per window	4
5.	Lamps	3	5
	a) b)	Voltage Wattage.	a) b)
6.		um duration of impulse for initiating. ct in millisecond	6
7.	Туре о	of reset self/manual.	7

GTP FOR LIGHTING

LIGHTING SYSTEM

A	Lighting System & Accessories A
1.	Manufacturer's Name and address1a)Fixturea)b)Accessoriesb)
2.	Applicable Standards for a)2 a)b)Accessoriesb)
3.	Manufacturer's Name type and catalogue no. for 3.a)Fixtureb)Accessoriesb)
4.	maximum permissible supply voltageVariation for satisfactory operation ofa)Fixturea)
	b) Accessories b)
В.	Conduits & Accessories B. (For each type & size)
1.	Manufacturer's Name and address 1
2.	Manufacturer's type, designation 2
3.	Applicable standard 3
C.	Junction BoxesC(For each type & size)
1.	Manufacturer's Name and address 1
2.	Manufacturer's type, designation 2
3.	Type of enclosure 3.
D.	Lighting panels D. (For each type & size)
1.	Manufacturer's Name and address 1
2.	Туре 2

3.	Degree of Protection		3
E. 1.	Lighting Transformer Manufacturer's Name and address	1	Е.
2.	Туре		2
3.	Rating (KVA)		3
4.	Standards Applicable		4
5.	Degree of protection for enclosure	5	
F. 1.	Lighting Ploes Manufacturer's Name and address	1	
2.	Туре		2
3.	Dimensions	3	
G.	Lighting Wires.		G.
1.	Manufacturer's Name & Add	ress.	1
2.	Voltage grade		2
3.	Cross section of conductor.		3
4.	Insulation Thickness.		4

GTP FOR DISTRIBUTION BOARD

DISTRIBUTION BOARD

1. 2.	L.T. Switchgear Manufacturer's Name Whether Manufacturer's have supplied 50 Nos. draw out Air circuit breaker panel out of which 5 Nos. are with CT and relaying scheme.	d 2.	1 YES	NO	
3.	Whether manufacturer's have supplied 50 Nos. MC panels similar to the offere		YES	NO	
4.	Whether 100 nos. (at least) circuit breaker the make and type being offered are a been operating satisfactorily.		YES	NO	
5.	Rated short circuit current	5.			
5.1	Symmetrical short circuit withstand 5.3 Current at rated voltage of switchgear cubicle.	1			
5.2	Peak short circuit withstand current	5.2			
6.	Degree of protection.	6			
6.1	Breaker / MCC/ AC & DC	6.1			
6.2	Distribution Cubicles. 6.2				
6.3	Busbar Chamber	6.3			
7.	Standard height, width & depth of typical p	banel	7.		
7.1	Circuit Breaker Panel	7.1			
7.2	MCC panel		7.2		
7.3	AC/DC Distribution Board.		7.3		
8.	Width of cable alley	8			
9.	Whether equipment are type tested as per	r IS	9.	YES	NO